Phase resetting and entrainment of pacemaker activity in single sinus nodal cells.

Author:

Anumonwo J M1,Delmar M1,Vinet A1,Michaels D C1,Jalife J1

Affiliation:

1. SUNY Health Science Center, Syracuse 13210.

Abstract

The phase-resetting and entrainment properties of single pacemaker cells were studied using computer simulations in a model of the rabbit sinus nodal cell, as well as using the whole-cell patch-clamp (current-clamp) technique in isolated rabbit sinus nodal cells. Spontaneous electrical activity in the cell model was reconstructed using Hodgkin-Huxley-type equations describing time- and voltage-dependent membrane currents. In both simulations and experiments, single subthreshold current pulses (depolarizing or hyperpolarizing) were used to scan the spontaneous cycle of the cells. Such pulses perturbed the subsequent discharge, producing temporary phasic changes in pacemaker period, and enabled the construction of phase response curves. On the basis of these results, we studied entrainment characteristics of the cells. For example, application of repetitive pulses allowed for phasic changes in the spontaneous cycle and resulted in stable 1:1 entrainment at a range of basic cycle length around the spontaneous cycle, or a 2:1 pattern at basic cycle length values about half the spontaneous cycle length. Between the two entrainment zones, complex Wenckebach-like patterns (e.g., 5:4, 4:3, and 3:2) were observed. The experimental data from the isolated cell were further analyzed from a theoretical perspective, and the results showed that the topological characteristics of the phase-resetting behavior accounts for the experimentally observed patterns during repetitive stimulation of the cell. This first demonstration of phase resetting in single cells provides the basis for phenomena such as mutual entrainment between electrically coupled pacemaker cells, apparent intranodal conduction, and reflex vagal control of heart rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3