Vagally induced block and delayed conduction as a mechanism for circus movement tachycardia in frog atria.

Author:

Rosenshtraukh L V1,Zaitsev A V1,Fast V G1,Pertsov A M1,Krinsky V I1

Affiliation:

1. Institute of Experimental Cardiology, Cardiology Research Center, Moscow, USSR.

Abstract

Episodes of tachycardia induced by strong vagal stimulation in spontaneously beating isolated atria of frog (Rana temporaria) were studied with multielectrode mapping technique. These episodes were inducible in 19 of 39 preparations. The arrhythmia started several seconds after cessation of vagal stimulation strong enough to cause sinus arrest, without electrical stimulation of the myocardium. The arrhythmia consisted of two to 20 beats (6 +/- 4, mean +/- SD, n = 42) with a cycle length of 100-500 msec. Recording from 32 sites with spatial resolution of 1-2 mm showed that the arrhythmia was due to intra-atrial circus movement. The estimated perimeter of the reentrant circuit ranged from 6 to 20 mm. In circuits of the minimal size, the average conduction velocity along the circuit was as low as 2-3 cm/sec. Paroxysms of the tachycardia were always preceded by vagally induced nonuniform depression of conduction, with some areas of atria being completely blocked. As the vagal influence decreased, the blocked areas recovered in an inhomogeneous manner, their unblocking being significantly (p less than 0.05) delayed after inhibition of tissue cholinesterase by proserine. The reentrant tachycardia was initiated when a sinus impulse arrived during certain phase of the unblocking. Unlike the well-known mechanism of reentrant excitation, which is based on inhomogeneous refractoriness and critically timed extrabeat(s), the circus movement in our model depended on vagally induced conduction block and could be launched by a single sinus impulse.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3