Experimental and modeling study of the excitability of carotid sinus baroreceptors.

Author:

van Brederode J F1,Seagard J L1,Dean C1,Hopp F A1,Kampine J P1

Affiliation:

1. Veterans Administration Medical Center, Milwaukee, WI 53295.

Abstract

In this study we examined the effects of blockade of a transient K+ current with 4-aminopyridine (4-AP) on the static stimulus-response relation of myelinated carotid sinus baroreceptors (n = 8), using a vascularly isolated sinus preparation in sodium thiopental-anesthetized dogs. In one class of baroreceptors (type I), which did not fire spontaneously below the pressure threshold (Pth), 4-AP (10(-5) to 10(-4) M) decreased Pth in a dose-dependent manner and transformed the stimulus-response relation from a discontinuous, hyperbolic shape to a sigmoidal, continuous curve. After exposure to 10(-4) M of 4-AP, baroreceptors were spontaneously active below Pth. These effects of 4-AP were more pronounced in baroreceptors with a high control Pth and were independent of enhanced neurotransmitter release or changes in carotid sinus distensibility. In contrast, 4-AP had relatively little effect on type II baroreceptors, which under control conditions are characterized by a continuous, sigmoidal stimulus-response curve. We believe that these effects of 4-AP on baroreceptor discharge were mediated by blockade of a transient K+ conductance that was present at the receptor spike-initiation zone. This hypothesis was examined using a mathematical model based on the Hodgkin-Huxley axon, but modified to include the transient K+ conductance. The modeling results showed that the minimum current necessary to elicit action potential firing is an extremely sensitive function of the magnitude of this K+ conductance, supporting our experimental results obtained with 4-AP. Our findings suggest that a transient K+ conductance might play a role in the determination of Pth and that differences between type I and II receptors could be the result of differences in the effectiveness of this conductance in controlling spike-initiation zone excitability.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3