Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements.

Author:

Schömig A,Fischer S,Kurz T,Richardt G,Schömig E

Abstract

The release of endogenous noradrenaline and its deaminated metabolite dihydroxyphenylglycol in the myocardium have been studied in the isolated perfused heart of the rat subjected to three models of energy depletion: ischemia, anoxia, and cyanide intoxication. Anoxia and cyanide intoxication were combined with substrate deficiency at constant perfusion flow. All three energy-depleting procedures caused a similar overflow of noradrenaline which, following a constant delay of 10 minutes without increased release, amounted to more than 25% of total heart content within 40 minutes. This noradrenaline overflow was not diminished in the absence of extracellular calcium and was inhibited by the uptake1 blocker desipramine in all three experimental models, indicating a common and nonexocytotic release mechanism. In the presence of glucose, neither anoxia nor cyanide intoxication resulted in a measurable noradrenaline overflow. Conversely, blockade of glycolysis or glucose depletion prior to ischemia or cyanide poisoning accelerated the noradrenaline overflow, demonstrating a key role of the sympathetic nerve cells' energy status in causing nonexocytotic catecholamine release. Blockade of energy metabolism in the presence of oxygen (cyanide model) resulted in the overflow of high amounts of dihydroxyphenylglycol that was not inhibited by uptake1 blockade. The release of the lipophilic dihydroxyphenylglycol by diffusion reflects deamination of axoplasmic noradrenaline by monoamine oxidase. Since saturation of the enzyme could be excluded in this model dihydroxyphenylglycol release can be taken as a mirror of cytoplasmic noradrenaline concentration. The results obtained by these studies indicate that nonexocytotic catecholamine release is a two-step process induced by energy deficiency in the sympathetic varicosity. In a first step, noradrenaline is lost from storage vesicles, resulting in increasing axoplasmic concentrations. The second step is the rate-limiting transport of intracellular noradrenaline across the cell membrane by the uptake1 carrier that has reversed its normal net transport direction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3