Passive electrical properties, mechanical activity, and extracellular potassium in arterially perfused and ischemic rabbit ventricular muscle. Effects of calcium entry blockade or hypocalcemia.

Author:

Cascio W E1,Yan G X1,Kléber A G1

Affiliation:

1. Department of Physiology, University of Berne, Switzerland.

Abstract

The relation among passive electrical resistive properties, longitudinal conduction velocity, extracellular potassium concentration, [K+]o, and mechanical activity was investigated in the isolated rabbit papillary muscle during normal arterial perfusion and no-flow ischemia in the presence and absence of verapamil, or a reduced extracellular Ca2+ concentration [Ca2+]o. During normal arterial perfusion, verapamil (0.5 microM, free [Ca2+]o = 1.0 mM) and hypocalcemic blood perfusate (free [Ca2+]o = 0.4 mM) reduced the maximal isometric twitch tension by 48% and 78%, depolarized the resting membrane by +3 and +7 mV, decreased the extracellular longitudinal resistance (ro) by 15% and 26%, and increased conduction velocity by 4% and 6%, respectively. The changes in conduction velocity during these interventions were consistent with those predicted by linear cable theory (+3% and +9%) for the observed changes in ro. In contrast, verapamil shortened whereas a reduced [Ca2+]o lengthened action potential duration. Comparison of simultaneously measured longitudinal whole tissue resistance (rt), intracellular longitudinal resistance (ri), [K+]o, and resting tension during ischemia showed a close association between abrupt cell-to-cell electrical uncoupling, development of ischemic contracture, and the secondary rise of [K+]o, which all started to develop after approximately 15 minutes of ischemia. Electrical cell-to-cell uncoupling was completed within 15 minutes. In the presence of verapamil, the relation among the onset of electrical cell-to-cell uncoupling, secondary rise of [K+]o, and onset of ischemic contracture in ischemia was qualitatively the same as in its absence; however, these events were postponed by approximately 10 minutes, and the rates of contracture development and uncoupling were diminished. Conduction velocity decreased after 12 minutes of ischemia from 54 to 36 cm/sec in the absence of and from 61 to 46 cm/sec in the presence of verapamil. This slowing effect on impulse conduction could not be attributed to changes of electrical cell-to-cell coupling because at this time an increase in ri had not yet taken place. In the presence of a reduced [Ca2+]o, the resting tension and ri increased almost immediately after the onset of ischemia. Although the resting tension rose progressively throughout the course of ischemia, the ri showed a biphasic increase characterized by an early transient increase that reached a peak at 8 minutes (+87%) and a second, irreversible increase beginning at approximately 12 minutes. This final onset of electrical cell-to-cell uncoupling and the secondary rise of [K+]o were not different from the findings with a normal [Ca2+]o.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3