Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis.

Author:

Hoh J F1,Rossmanith G H1,Kwan L J1,Hamilton A M1

Affiliation:

1. Department of Physiology, University of Sydney, NSW, Australia.

Abstract

The mechanism of action of adrenaline on cardiac contractility in rat papillary muscles containing V1 and V3 isomyosins was analyzed during barium-activated contractures at 25 degrees C by frequency domain analysis using pseudo-random binary noise-modulated perturbations. The analysis characterizes a frequency (fmin) at which dynamic stiffness of a muscle is a minimum, a parameter that reflects the rate of cycling of crossbridges. We have previously shown that fmin for V1- and V3-containing papillary muscles were 2.1 +/- 0.2 Hz (mean +/- SD) (n = 10) and 1.1 +/- 0.2 Hz (n = 8), respectively, and that these values were independent of the level of activation. The present study's goal was to determine whether the inotropic action of adrenaline was associated with an increased rate of crossbridge cycling. The results show that a saturating dose of adrenaline increased fmin in V1 hearts by 49 +/- 2% (n = 11). The action on V3 hearts was significantly less; the increase in fmin was 26 +/- 2% (n = 6). The increase in fmin for V1 hearts was shown to be sensitive to the beta-blocking agent propranolol. These results suggest that adrenaline significantly increases the rate of crossbridge cycling by a beta-receptor-mediated mechanism. We conclude that the increased contractility of the heart in the presence of adrenaline arises not only from more complete activation of the contractile proteins but also from the increased rate at which each crossbridge can transduce energy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference58 articles.

1. Force-velocity relations in mammalian heart muscle;Sonnenblick EH;Am J Physiol,1962

2. Implications of muscle mechanics in the heart;Sonnenblick EH;Fed Proc,1962

3. Determinants of active state in heart muscle: Force, velocity, instantaneous muscle length, time;Sonnenblick EH;Fed Proc,1965

4. Relaxing effects of catecholamines on mammalian heart

5. Rolett EL: Adrenergic mechanisms in mammalian myocardium in Langer GA Brady AJ (eds): The Mammalian Myocardium. New York John Wiley & Sons Inc 1974 pp 219-250

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3