Left ventricular internal resistance and unloaded ejection flow assessed from pressure-flow relations: a flow-clamp study on isolated rabbit hearts.

Author:

Vaartjes S R,Boom H B

Abstract

Left ventricular pressure-flow relations were studied, using excised working rabbit hearts and imposing constant flow ejections (flow-clamps) to separate the effects of flow on pressure from those of time, flow duration, starting volume, ejected volume, and volume at specified time. Pressure-flow data at given volume and time were independent of flow duration, starting volume, and ejected volume for flow-clamp durations exceeding 30 msec. Flow history independent of pressure-flow relations was linear for flow values larger than +/- 5 ml/sec. The time-varying elastance model, E(t), of the ventricle was extended with a resistive component. Transient effects of flow can be explained by including a second elastance. The resulting verified 3-component model is consistent with recent reported experimental findings. The properties of internal resistance correspond to a constant unloaded ejection flow Qmax, which was tested by extrapolating the linear pressure-flow relations to zero pressure. Qmax reached a plateau value of approximately 25 ml/sec within 50 msec after the start of contraction. In relaxation, Qmax is only slightly smaller. Qmax did not depend on volume; therefore, the following equation was adequate for the relation between pressure, p(t); volume, V(t); and flow Q(t), during the flow-clamped ejections from 30 minutes after the start of the flow: (t) = E(t).(V(t)-Vd).(1-Q(t)/Qmax)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3