Intracellular K+ activity, intracellular Na+ activity and maximum diastolic potential of canine subendocardial Purkinje cells from one-day-old infarcts.

Author:

Dresdner K P,Kline R P,Wit A L

Abstract

The basis for the reduced maximum diastolic potential of canine cardiac subendocardial Purkinje fibers surviving one day after extensive transmural infarction was investigated, using double-barrel potassium and sodium ion-sensitive microelectrodes. The maximum diastolic potential of Purkinje fibers in infarct preparations from the left ventricular apex measured during the first hour of superfusion in a tissue bath was -50.1 +/- 13.7 mV, a value markedly reduced from the value in control Purkinje fibers from noninfarcted preparations (-85.0 +/- 4.5 mV). The intracellular potassium ion activity was reduced by 50.4 mM during this time (intracellular potassium ion activity equals 61.6 +/- 16.1 mM, as compared to control intracellular potassium ion activity of 112 +/- 19.8 mM). The potassium equilibrium potential was reduced by 16.0 mV (from -97.2 +/- 4.7 mV in controls to -81.2 +/- 6.9 mV), thus accounting for about one half of the reduction in the maximum diastolic potential. After 6 hours of superfusion, the maximum diastolic potential increased to -78.9 +/- 8.7 mV (still significantly less than control). The potassium equilibrium potential had largely recovered (-93.8 +/- 5.9 mV). The intracellular sodium ion activity of Purkinje fibers in the infarcts (15.6 +/- 6.9 mM) was elevated during the first hour of superfusion by 6.2 mM compared to control (9.4 +/- 2.6 mM), and this was only 12% as much as the initial intracellular potassium ion activity decrease. Sodium ion activity after 3-6 hours of superfusion was not significantly different than normal (12.1 +/- 4.9 mM). In conclusion, only a portion of the maximum diastolic potential changes can be explained by a reduction of the potassium equilibrium potential. It is likely that change(s) in the cell membrane sodium-potassium pump's function and in the membrane conductance are also involved. Furthermore, the lack of a compensatory increase in intracellular sodium ion activity accompanying the large reduction of intracellular potassium ion activity may be a consequence of the cellular acidosis, which is known to occur during myocardial ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3