Cellular Basis of Biventricular Hypertrophy and Arrhythmogenesis in Dogs With Chronic Complete Atrioventricular Block and Acquired Torsade de Pointes

Author:

Volders Paul G. A.1,Sipido Karin R.1,Vos Marc A.1,Kulcsár Attila1,Verduyn S. Cora1,Wellens Hein J. J.1

Affiliation:

1. From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands, and the Laboratory of Experimental Cardiology, University of Leuven, Belgium (K.R.S.).

Abstract

Background —In the dog with chronic complete atrioventricular block (AVB), torsade de pointes arrhythmias (TdP) can be induced reproducibly by class III antiarrhythmic agents. In vivo studies reveal important electrophysiological alterations of the heart at 5 weeks of AVB, resulting in increased proarrhythmia. Autopsy studies indicate the presence of biventricular hypertrophy. In this study, the cellular basis of proarrhythmia and hypertrophy in chronic AVB was investigated. Methods and Results —From chronic-AVB dogs with increased heart weights and TdP, left midmyocardial and right ventricular myocytes were isolated by enzymatic dispersion. These myocytes were significantly larger than sinus rhythm (SR) controls. In chronic AVB, the action potential spike-and-dome configuration was preserved. However, the action potential duration (APD) at 95% and 50% of repolarization of the left midmyocardium was significantly larger in chronic AVB than in SR, with little change in the right ventricle, causing enhanced interventricular dispersion of repolarization at slow pacing rates. Treatment with the class III agent almokalant increased the APD to a much larger extent in chronic-AVB than in SR myocytes and resulted in a higher incidence of early afterdepolarizations (EADs). EADs had their takeoff potential between −35 and 0 mV. There was no evidence that spontaneous sarcoplasmic reticulum Ca 2+ release underlies these EADs. Conclusions —In the dog, chronic AVB leads to hypertrophy of both right and left ventricular myocytes. The repolarization abnormalities predisposing for class III–dependent TdP in vivo are the results of cellular electrophysiological remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3