Hypoxic Stress Induces Cardiac Myocyte–Derived Interleukin-6

Author:

Yamauchi-Takihara Keiko1,Ihara Yoshiji1,Ogata Atsushi1,Yoshizaki Kazuyuki1,Azuma Junichi1,Kishimoto Tadamitsu1

Affiliation:

1. From the Department of Medicine III, Osaka University Medical School, Suita, Osaka, Japan.

Abstract

Background Hypoxic and ischemic stresses cause a series of well-documented changes in myocardial cells and tissues, including loss of contractility, changes in lipid and fatty acid metabolism, and irreversible membrane damage leading to eventual cellular death. Activated neutrophils are considered to be involved in this myocardial cellular injury. By stimulation of the neutrophils with chemotactic factors, canine neutrophils can be induced to adhere to isolated cardiac myocytes only if the myocytes have been previously exposed to cytokines such as tumor necrosis factor–α, interleukin (IL)-1, and IL-6. Methods and Results To examine the possible involvement of IL-6 in ischemia-reperfusion injury, we used cultured rat neonatal cardiac myocytes to study the effects of hypoxic stress on the production of IL-6 by cardiac myocytes. Unstimulated cardiac myocytes (3×10 5 cells per dish) produced 320 pg IL-6 over 4 hours in vitro (ie, biological activity equal to 320 pg recombinant IL-6, as detected by bioassay using the MH-60.BSF2 cell line). The incubation of cardiac myocytes under hypoxic conditions for 4 hours induced significantly increased production of IL-6 compared with normoxic conditions (2.82±0.49 versus 1.64±0.18 U/mL, P <.05). Furthermore, reoxygenation for 2 hours after 2 hours of hypoxic stress significantly augmented the production of IL-6 by cardiac myocytes (4.34±0.52 U/mL, P <.05). These responses to hypoxia and reoxygenation were not observed in fibroblasts isolated from the same tissue. Although unstimulated cardiac myocytes lacked IL-6 mRNA expression detectable by Northern blot analysis, hypoxic stress induced the expression of IL-6 mRNA in the cardiac myocytes. Several pathophysiologically relevant factors also augmented IL-6 release from cultured cardiac myocytes, including IL-1β, ionomycin, and epinephrine. Conclusions Cardiac myocytes respond to hypoxic stress to augment the production of IL-6, and the IL-6 derived from cardiac myocytes may play an important role in the progression of myocardial dysfunction observed in cardiac ischemia-reperfusion injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3