Affiliation:
1. From the Division of Pediatric Cardiology, Department of Pediatrics, Beatrix Children’s Hospital and Groningen Utrecht Institute for Drug Exploration, Groningen, Netherlands.
Abstract
Background—Around birth, myocardial substrate supply changes from carbohydrates before birth to primarily fatty acids after birth. Parallel to these changes, the myocardium is expected to switch from the use of primarily lactate before birth to fatty acids thereafter. However, myocardial lactate uptake and oxidation around birth has not been measured in vivo.Methods and Results—We measured myocardial lactate uptake, oxidation, and release with infusion of [1-13C]lactate and myocardial flux of fatty acids and glucose in chronically instrumented fetal and newborn (1 to 15 days) lambs. Myocardial lactate oxidation was the same in newborn (81.7±14.7 μmol · min−1· 100 g−1, n=11) as in fetal lambs (60.7±26.7 μmol · min−1· 100 g−1, n=7). Lactate uptake was also the same in newborn as in fetal lambs. Lactate uptake was higher than lactate flux, indicating lactate release simultaneously with uptake. In the newborn lambs, lactate uptake declined with age. Lactate uptake was strongly related to lactate supply, whereas lactate oxidation was not. The supply of fatty acids or glucose did not interfere with lactate uptake, but the flux of fatty acids was inversely related to lactate oxidation.Conclusions—We show that lactate is an important energy source for the myocardium before birth as well as in the first 2 weeks after birth in lambs. We also show that there is release of lactate by the myocardium simultaneously with uptake of lactate. Furthermore, we show that lactate oxidation may be attenuated by fatty acids but not by glucose, probably at the level of pyruvate dehydrogenase.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献