Myocardial Lactate Metabolism in Fetal and Newborn Lambs

Author:

Bartelds Beatrijs1,Knoester Hennie1,Beaufort-Krol Gertie C. M.1,Smid Gioia B.1,Takens Janny1,Zijlstra Willem G.1,Heymans Hugo S. A.1,Kuipers Jaap R. G.1

Affiliation:

1. From the Division of Pediatric Cardiology, Department of Pediatrics, Beatrix Children’s Hospital and Groningen Utrecht Institute for Drug Exploration, Groningen, Netherlands.

Abstract

Background—Around birth, myocardial substrate supply changes from carbohydrates before birth to primarily fatty acids after birth. Parallel to these changes, the myocardium is expected to switch from the use of primarily lactate before birth to fatty acids thereafter. However, myocardial lactate uptake and oxidation around birth has not been measured in vivo.Methods and Results—We measured myocardial lactate uptake, oxidation, and release with infusion of [1-13C]lactate and myocardial flux of fatty acids and glucose in chronically instrumented fetal and newborn (1 to 15 days) lambs. Myocardial lactate oxidation was the same in newborn (81.7±14.7 μmol · min−1· 100 g−1, n=11) as in fetal lambs (60.7±26.7 μmol · min−1· 100 g−1, n=7). Lactate uptake was also the same in newborn as in fetal lambs. Lactate uptake was higher than lactate flux, indicating lactate release simultaneously with uptake. In the newborn lambs, lactate uptake declined with age. Lactate uptake was strongly related to lactate supply, whereas lactate oxidation was not. The supply of fatty acids or glucose did not interfere with lactate uptake, but the flux of fatty acids was inversely related to lactate oxidation.Conclusions—We show that lactate is an important energy source for the myocardium before birth as well as in the first 2 weeks after birth in lambs. We also show that there is release of lactate by the myocardium simultaneously with uptake of lactate. Furthermore, we show that lactate oxidation may be attenuated by fatty acids but not by glucose, probably at the level of pyruvate dehydrogenase.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3