Characteristics and Distribution of M Cells in Arterially Perfused Canine Left Ventricular Wedge Preparations

Author:

Yan Gan-Xin1,Shimizu Wataru1,Antzelevitch Charles1

Affiliation:

1. From Masonic Medical Research Laboratory, Utica, NY.

Abstract

Background —Much of the characterization of the M cell to date has been accomplished using isolated tissues and cells. This study uses an arterially perfused wedge preparation to examine the characteristics and distribution of M cells within the anterior wall of the canine left ventricle under more physiological conditions. Methods and Results —Floating microelectrodes were used to record transmembrane action potentials simultaneously from epicardial, M region, and endocardial or subendocardial Purkinje sites in isolated arterially perfused canine left ventricular wedge preparations. A transmural ECG was recorded concurrently. M cells with the longest action potentials were found in the deep subendocardium in wedge preparations isolated from the anterior wall of the left ventricle. Fairly smooth transitions in action potential duration (APD) were observed except in the region between epicardium and deep subepicardium. Tissue resistivity increased 2.8-fold in this region and much more modestly in the deep subendocardium. Dispersion of APD 90 across the left ventricular wall averaged 51±19 and 64±25 ms at basic cycle lengths of 1000 and 2000 ms, respectively, whereas transmural dispersion of repolarization time was smaller (34±18 and 45±25 ms), owing to the endocardial to epicardial activation sequence. Conclusions —We conclude that the qualitative differences between the 3 ventricular cell types previously described in isolated tissues and cells are maintained in intact canine left ventricular wall preparations in which the myocardial cells are electrically well coupled. As anticipated, differences in APD are quantitatively smaller because of electrotonic interactions among the 3 cell types. Our data indicate that transmural dispersion of repolarization is the result of intrinsic differences in APD of cells spanning the ventricular wall as well as a heterogeneous distribution of tissue resistivity across the wall.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference40 articles.

1. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: Evidence for presence of M cells

2. Li GR Feng J Carrier M Nattel S. Transmural electrophysiologic heterogeneity in the human ventricle. Circulation . 1995;92(suppl I):I-158. Abstract.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3