Monocyte Chemoattractant Protein-1 but Not Tumor Necrosis Factor-α Is Correlated With Monocyte Infiltration in Mouse Lipid Lesions

Author:

Reckless Jill1,Rubin Edward M.1,Verstuyft Judy B.1,Metcalfe James C.1,Grainger David J.1

Affiliation:

1. From the Departments of Biochemistry and Medicine, University of Cambridge (UK) (J.R., J.C.M., D.J.G.), and Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley (E.M.R., J.B.V.).

Abstract

Background —Apolipoprotein (apo)(a) transgenic mice and C57BL/6 mice fed a high fat diet develop similar-sized lipid lesions, but lesions in apo(a) mice are devoid of macrophages. We used this observation to identify which proinflammatory proteins might be involved in mediating monocyte recruitment during atherogenesis. Methods and Results —Macrophage-deficient apo(a) transgenic mouse lesions contained similar levels of several different proinflammatory proteins, both adhesion molecules (intercellular adhesion molecule-1 [ICAM-1] and vascular cell adhesion molecule-1 [VCAM-1]) and cytokines (tumor necrosis factor-α [TNF-α] and macrophage inflammatory protein-1α [MIP-1α]), similar to the macrophage-rich lesions of C57BL/6 mice. Conclusions —From this we conclude that ICAM-1, VCAM-1, TNF-α, and MIP-1α may all be necessary for vascular monocyte recruitment in vivo, but they cannot be sufficient. Monocyte chemoattractant protein-1 (MCP-1) protein was undetectable in the vessel wall taken from apo(a) transgenic mice fed a high fat diet compared with high expression in mice with lipid lesions (C57BL/6 and apoE knockout mice). Therefore elevated expression of MCP-1 but not TNF-α, MIP-1α, ICAM-1, or VCAM-1 is correlated with vascular macrophage accumulation. To test the hypothesis that monocyte infiltration during atherogenesis is MCP-1 dependent, it will be necessary to develop specific pharmacological inhibitors of MCP-1 activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3