Copper-Induced Tissue Factor Expression in Human Monocytic THP-1 Cells and Its Inhibition by Antioxidants

Author:

Crutchley David J.1,Que Benito G.1

Affiliation:

1. From the Miami Heart Research Institute, Miami Beach, Fla.

Abstract

Background Transition metals such as copper are known to initiate free radical formation and lipid peroxidation. Recent reports suggest that intracellular reactive oxygen intermediates can induce the transcription of a number of important genes. The present study examines the effects of copper and iron on the ability of monocytic cells to synthesize and express tissue factor, the potent procoagulant factor. Methods and Results Exposure of human monocytic THP-1 cells to 5 to 10 μmol/L Cu 2+ led to cell damage and the expression of tissue factor activity to levels up to 70 times higher than control, as measured by a single-stage plasma coagulation assay. These effects were seen only in the presence of a lipophilic chelating agent, 8-hydroxyquinoline, suggesting that intracellular transport of Cu 2+ was required. The effects of Cu 2+ were mimicked by ceruloplasmin but not by Fe 3+ or hemin. The induction of tissue factor activity by Cu 2+ was slow in onset (6 hours) but sustained (24 hours) and was accompanied by increased tissue factor mRNA levels, measured by reverse transcription/polymerase chain reaction after annealing with oligomer primers. Increases in tissue factor protein, measured by a specific immunoassay, also occurred but were smaller than those in activity. Cu 2+ , therefore, appears to act at both the transcriptional and posttranslational levels. The effects of Cu 2+ were inhibited by a number of lipophilic antioxidants, including probucol, vitamin E, butylated hydroxytoluene, and a 21-aminosteroid, U74389G. Conclusions Exposure of monocytes to oxidizing conditions may lead to the expression of high levels of tissue factor activity, with accompanying risk for disseminated intravascular coagulation, and this may be inhibited by lipophilic antioxidants.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3