cGMP-Elevating Agents Suppress Proliferation of Vascular Smooth Muscle Cells by Inhibiting the Activation of Epidermal Growth Factor Signaling Pathway

Author:

Yu Sheu-Meei1,Hung Li-Man1,Lin Chia-Chih1

Affiliation:

1. the Laboratory of Cardiovascular Science, Department of Pharmacology (S.M.Y., L.M.H., C.C.L.), Chang Gung College of Medicine and Technology, Kwei-San, Tao-Yuan, Taiwan, Republic of China.

Abstract

Background Abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the pathogenesis of atherosclerosis and many vascular diseases. It is known that nitric oxide released from the endothelium participates in the regulation of VSMC proliferation via a cyclic 3′,5′-guanosine monophosphate (cGMP)-mediated mechanism. In a series of experiments, sodium nitroprusside (SNP) and A02131 -1 were evaluated for their antiproliferative effect and the mechanism of their cGMP-elevating action. Methods and Results The effect of SNP and A02131-1 on epidermal growth factor (EGF)-stimulated proliferation of rat aortic smooth muscle cells (VSMC) was examined. Cell proliferation was measured in terms of [ 3 H]thymidine incorporation, flow cytometry, and the cell number. Further, their effect on the EGF-activated signal transduction pathway was assessed by measuring mitogen-activated protein kinases (MAPK), MAPK kinase (MEK), Raf-1 activity, and the formation of active form of Ras . SNP and A02131-1 inhibited EGF-induced DNA synthesis and subsequent proliferation of VSMC. These two increased cGMP but only a little cAMP in VSMC. A similar antiproliferative effect was observed with 8-bromo-cGMP. The antiproliferative effect of the two was reversed by KT5823 but not by dideoxyadenosine nor Rp-cAMPS. SNP and A02131-1 blocked the EGF-inducible cell cycle progression at the G1/S phase. Further experiments indicated that the two cGMP-elevating agents primarily blocked the activation of Raf-1 by EGF-activated Ras . Conclusions These results demonstrate that cGMP-elevating agents inhibit [ 3 H]thymidine incorporation and thus the growth of VSMC, and this inhibition appears to attenuate EGF-activated signal transduction pathway by preventing Ras -dependent activation of Raf-1.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3