Adenoviral Gene Transfer of the Human V2 Vasopressin Receptor Improves Contractile Force of Rat Cardiomyocytes

Author:

Laugwitz Karl-Ludwig1,Ungerer Martin1,Schöneberg Torsten1,Weig Hans-Jörg1,Kronsbein Kai1,Moretti Alessandra1,Hoffmann Katrin1,Seyfarth Melchior1,Schultz Günter1,Schömig Albert1

Affiliation:

1. From I. Medizinische Klinik, Klinikum rechts der Isar, and Deutsches Herzzentrum München, Germany; and Institut für Pharmakologie (T.S., G.S.), Freie Universität Berlin, Germany.

Abstract

Background —In congestive heart failure, high systemic levels of the hormone arginine vasopressin (AVP) result in vasoconstriction and reduced cardiac contractility. These effects are mediated by the V1 vasopressin receptor (V1R) coupled to phospholipase C β-isoforms. The V2 vasopressin receptor (V2R), which promotes activation of the Gs/adenylyl cyclase system, is physiologically expressed in the kidney but not in the myocardium. Expression of a recombinant V2R (rV2R) in the myocardium could result in a positive inotropic effect via the endogenous high concentrations of AVP in heart failure. Methods and Results —A recombinant adenovirus encoding the human V2R (Ad-V2R) was tested for its ability to modulate the cardiac Gs/adenylyl cyclase system and to potentiate contractile force in rat ventricular cardiomyocytes and in H9c2 cardiomyoblasts. Ad-V2R infection resulted in a virus concentration-dependent expression of the transgene and led to a marked increase in cAMP formation in rV2R-expressing cardiomyocytes after exposure to AVP. Single-cell shortening measurements showed a significant agonist-induced contraction amplitude enhancement, which was blocked by the V2R antagonist, SR 121463A. Pretreatment of Ad-V2R-infected cardiomyocytes with AVP led to desensitization of the rV2R after short-term agonist exposure but did not lead to further loss of receptor function or density after long-term agonist incubation, thus demonstrating resistance of the rV2R to downregulation. Conclusions —Adenoviral gene transfer of the V2R in cardiomyocytes can modulate the endogenous adenylyl cyclase-signal transduction cascade and can potentiate contraction amplitude in cardiomyocytes. Heterologous expression of cAMP-forming receptors in the myocardium could lead to novel strategies in congestive heart failure by bypassing the desensitized β-adrenergic receptor signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3