Affiliation:
1. Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia.
Abstract
BACKGROUND
In hypertrophic cardiomyopathy, ejection fraction is normal or increased, and force-length relations are reduced. However, three-dimensional (3D) motion and deformation in vivo have not been assessed in this condition. We have reconstructed the 3D motion of the left ventricle (LV) during systole in 7 patients with hypertrophic cardiomyopathy (HCM) and 12 normal volunteers by use of magnetic resonance tagging.
METHODS AND RESULTS
Transmural tagging stripes were automatically tracked to subpixel resolution with an active contour model. A 3D finite-element model was used to interpolate displacement information between short- and long-axis slices and register data on a regional basis. Displacement and strain data were averaged into septal, posterior, lateral, and anterior regions at basal, midventricular, and apical levels. Radial motion (toward the central long axis) decreased slightly in patients with HCM, whereas longitudinal displacement (parallel to the long axis) of the base toward the apex was markedly reduced: 7.5 +/- 2.5mm (SD) versus 12.5 +/- 2.0 mm, P < .001. Circumferential and longitudinal shortening were both reduced in the septum (P < .01 at all levels). The principal strain associated with 3D maximal contraction was slightly depressed in many regions, significantly in the basal septum (-0.18 +/- 0.05 versus -0.22 +/- 0.02, P < .05) and anterior (-0.20 +/- 0.05 versus -0.23 +/- 0.02, P < .05) walls. In contrast, LV torsion (twist of the apex about the long axis relative to the base) was greater in HCM patients (19.9 +/- 2.4 degrees versus 14.6 +/- 2.7 degrees, P < .01).
CONCLUSIONS
HCM patients had reduced 3D myocardial shortening on a regional basis; however, LV torsion was increased.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
355 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献