Primate Smooth Muscle Cell Migration From Aortic Explants Is Mediated by Endogenous Platelet-Derived Growth Factor and Basic Fibroblast Growth Factor Acting Through Matrix Metalloproteinases 2 and 9

Author:

Kenagy R. D.1,Hart C. E.1,Stetler-Stevenson W. G.1,Clowes A. W.1

Affiliation:

1. From the Department of Surgery, University of Washington (R.D.K., A.W.C.), and Zymogenetics, Inc, Seattle, Wash (C.E.H.), and Laboratory of Pathology, Division of Clinical Sciences, National Cancer Institute, Bethesda, Md (W.G.S.-S.).

Abstract

Background Migration of arterial smooth muscle cells (SMCs) is regulated by basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), and matrix metalloproteinases (MMPs) in the injured rat carotid artery. We have recently shown that migration of SMCs from baboon aortic explants depends on the activity of MMPs, but the identity of the stimulatory MMPs and the role of bFGF and PDGF in this primate system are not known. Methods and Results These experiments were designed to determine whether MMP2, MMP9, bFGF, or PDGF plays a role in SMC migration from medial explants of baboon aorta. Explants were cultured in serum-free medium with insulin, transferrin, and ovalbumin. Neutralizing antibodies to MMP2 and antibodies that inhibit activation of proMMP9 decreased SMC migration from the aortic explants. Antibodies to bFGF and to the α- and β-subunits of the PDGF receptor also inhibited migration from the explants. Addition of bFGF and PDGF-BB but not PDGF-AA increased migration. The antibodies to bFGF but not the antibodies to the PDGF receptor subunits decreased the levels of MMP9, whereas all the antibodies decreased activated MMP2. Conclusions These data demonstrate that SMC migration from primate aortic explants is dependent on endogenous MMP2, MMP9, PDGF, and bFGF. The data also suggest that PDGF-induced (PDGF-BB or possibly PDGF-AB) migration is dependent on MMP2, whereas bFGF-induced migration depends on both MMP2 and MMP9.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3