Inducible Nitric Oxide Synthase Expression in Smooth Muscle Cells and Macrophages of Human Transplant Coronary Artery Disease

Author:

Ravalli Stefano1,Albala Arline1,Ming Ming1,Szabolcs Matthias1,Barbone Alessandro1,Michler Robert E.1,Cannon Paul J.1

Affiliation:

1. From the Departments of Medicine (S.R., A.A., M.M., A.B., P.J.C.), Pathology (M.S.), and Surgery (R.E.M.), Columbia University College of Physicians and Surgeons, New York, NY.

Abstract

Background —The inducible isoform of the nitric oxide synthase (iNOS) produces large amounts of nitric oxide in response to cytokine stimulation. Previous investigations have demonstrated iNOS expression in the setting of acute and chronic rejection in experimental cardiac transplant models. The goal of this study was to investigate whether iNOS is upregulated in human transplant coronary artery disease (TCAD), a major cause of late mortality after cardiac transplantation. Methods and Results —We studied 15 patients with TCAD and 10 with normal coronary arteries. In situ hybridization and immunohistochemistry were used in tissue sections to localize iNOS mRNA and protein, respectively. The presence of peroxynitrite was indirectly assessed by immunostaining with an anti-nitrotyrosine antibody. Normal coronary arteries had no evidence of iNOS expression. In contrast, 30 of 36 coronary artery segments with TCAD (83%) were immunostained by the iNOS antibody. The presence of iNOS mRNA was demonstrated in these vessels by in situ hybridization. Specific cell markers identified iNOS-positive cells as neointimal macrophages and smooth muscle cells. Nitrotyrosine immunoreactivity colocalized with iNOS expression in arteries with TCAD, distributed in macrophages and smooth muscle cells. Conclusions —iNOS mRNA and protein are expressed in human arteries with TCAD, where they are associated with extensive nitration of protein tyrosines. These findings indicate that the high-output nitric oxide pathway and possibly the oxidant peroxynitrite might be involved in the process leading to the development of TCAD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference50 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3