Tetrahydrobiopterin and Dysfunction of Endothelial Nitric Oxide Synthase in Coronary Arteries

Author:

Cosentino Francesco1,Katusic Zvonimir S.1

Affiliation:

1. From the Departments of Anesthesiology and Pharmacology, Mayo Clinic, Rochester, Minn.

Abstract

Background The l -arginine/nitric oxide pathway plays a key role in the regulation of arterial tone. Biosynthesis of nitric oxide requires activation of nitric oxide synthase in the presence of tetrahydrobiopterin as a cofactor. Biochemical studies demonstrated that activation of purified nitric oxide synthase at suboptimal concentrations of tetrahydrobiopterin leads to production of hydrogen peroxide. The present experiments were designed to determine whether in coronary arteries inhibition of tetrahydrobiopterin synthesis may favor nitric oxide synthase–catalyzed production of hydrogen peroxide. Methods and Results Primary branches of canine left anterior descending artery were incubated for 6 hours in minimum essential medium in the presence or in the absence of the tetrahydrobiopterin synthesis inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP; 10 −2 mol/L). Arterial rings were suspended for isometric tension recording. Production of cGMP was measured by radioimmunoassay. Experiments were performed in the presence of indomethacin (10 −5 mol/L). During contractions to the thromboxane A 2 /prostaglandin H 2 receptor agonist U46619 (10 −7 mol/L), calcium ionophore A23187 (10 −9 to 10 −6 mol/L) caused endothelium-dependent relaxations. A nitric oxide synthase inhibitor, N G -nitro- l -arginine methyl ester (3×10 −4 mol/L), significantly inhibited these relaxations. In DAHP-treated arteries, relaxations to A23187 and its stimulating effect on cGMP production were significantly reduced in the presence of catalase (1200 U/mL). By contrast, catalase did not exert any effect in rings incubated in the absence of DAHP. Furthermore, the inhibitory effect of catalase on A23187-induced relaxations was abolished when coronary arteries were incubated in the presence of DAHP plus a liposoluble analogue of tetrahydrobiopterin, 6-methyltetrahydropterin (10 −4 mol/L). Conclusions The present study suggests that hydrogen peroxide may be a mediator of endothelium-dependent relaxations in coronary arteries depleted of tetrahydrobiopterin. This initially compensatory response, triggered by a dysfunctional nitric oxide synthase, may represent an important mechanism underlying oxidative vascular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3