Adenoviral Constructs Encoding Phosphorylation-Competent Full-length and Truncated Forms of the Human Retinoblastoma Protein Inhibit Myocyte Proliferation and Neointima Formation

Author:

Smith Roy C.1,Wills Ken N.1,Antelman Douglas1,Perlman Harris1,Truong Lonn N.1,Krasinski Kevin1,Walsh Kenneth1

Affiliation:

1. From the Division of Cardiovascular Research, Department of Medicine, Tufts University School of Medicine, St. Elizabeth’s Medical Center (R.C.S., H.P., L.N.T., K.K., K.W.), Boston, Mass; CANJI, Inc (K.N.W., D.A.), San Diego, Calif; and the Program in Cell, Molecular and Developmental Biology, Sackler School of Biomedical Sciences, Tufts University (H.P., K.W.), Boston, Mass.

Abstract

Background The retinoblastoma (Rb) protein is a key cell-cycle regulator that controls entry into the S phase by modulating the activity of the E2F transcription factor. We analyzed the effects of full-length phosphorylation-competent and a mutant truncated form of human Rb for their effects on vascular smooth muscle cell (VSMC) proliferation and neointima formation. Methods and Results A number of mutant forms, both phosphorylation competent and incompetent, of human Rb protein were evaluated for their ability to inhibit E2F activity. The results of these assays indicated that a phosphorylation competent, amino-terminal–truncated Rb protein (Rb56) was a particularly potent inhibitor of E2F-mediated transcription relative to the full-length Rb construct (Rb110). Adenoviral constructs containing Rb56 or Rb110 expressed their respective Rb forms in VSMCs, as determined by Western immunoblot analysis, and were similar in their abilities to arrest the cell cycle, as determined by assays of 3 H-thymidine incorporation and by flow cytometric analyses. When examined for their effect on neointima formation after balloon injury of the rat carotid artery, both full-length and truncated forms of Rb inhibited formation of this VSMC-derived lesion. Conclusions These analyses revealed that the maintenance of high levels of phosphorylation-competent human Rb, either full-length or truncated forms, in VSMCs is an effective method of modulating the extent of intimal hyperplasia that occurs after balloon-induced vascular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3