Role of Nitric Oxide in the Local Regulation of Pulmonary Vascular Resistance in Humans

Author:

Cooper Christopher J.1,Landzberg Michael J.1,Anderson Todd J.1,Charbonneau Francois1,Creager Mark A.1,Ganz Peter1,Selwyn Andrew P.1

Affiliation:

1. From the Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115.

Abstract

Background Endothelium-derived nitric oxide (NO) may be an important mediator of vascular resistance in the pulmonary circulation. We tested the hypotheses that in conscious adults the endothelium, through NO production, is important in maintaining basal pulmonary vascular resistance and that it can increase NO production further in response to receptor-mediated stimulation, leading to further vasodilation. Methods and Results Pulmonary arterial resistance vessel function was studied within the distribution of a segmental lower lobe pulmonary artery in eight conscious adults 37 to 76 years old who were undergoing cardiac catheterization. Segmental blood flow was determined with use of a Doppler-tip guide wire and quantitative angiography. Drugs were administered locally within the segmental artery through an infusion catheter. N G -Monomethyl- l -arginine (L-NMMA) was used as a specific inhibitor of NO production, whereas acetylcholine (ACh) was used to test receptor-mediated vasodilation. To demonstrate that vasodilation to ACh was NO dependent, ACh response was tested alone, in the presence of L-NMMA, and in the presence of a control constrictor phenylephrine. Basal pulmonary vascular resistance was NO dependent because L-NMMA infusion resulted in a dose-dependent decrease in local flow velocity ( P <.005), with flow decreasing 33% at the highest dose of L-NMMA. ACh infusion resulted in a dose-dependent increase in flow velocity ( P =.001). The ACh response was at least in part NO dependent because it was diminished by the presence of L-NMMA ( P <.05). The effect of L-NMMA on the ACh response was not due to nonspecific preconstriction because L-NMMA diminished the ACh response significantly more than did the endothelium-independent constrictor phenylephrine ( P <.05) despite comparable preconstriction. Conclusions In healthy conscious adults, (1) normal basal pulmonary resistance is maintained in part by continuous local production of NO and (2) the local NO production is responsive to receptor-mediated stimulation, leading to further vasodilation, and can be tested with ACh.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3