Intracardiac ultrasound measurement of volumes and ejection fraction in normal, infarcted, and aneurysmal left ventricles using a 10-MHz ultrasound catheter.

Author:

Chen C1,Guerrero J L1,Vazquez de Prada J A1,Padial L R1,Schwammenthal E1,Chen M H1,Jiang L1,Svizzero T1,Simon H1,Thomas J D1

Affiliation:

1. Non-Invasive Cardiac Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston.

Abstract

BACKGROUND Our objective was to examine the accuracy of intracardiac ultrasound (ICUS) measurement of left ventricular (LV) volumes and ejection fraction (EF) using a 10-MHz ultrasound catheter. ICUS can image the LV in cross sections at all levels along the long axis with a transducer mounted on the tip of a catheter. Sequential serial LV cross-sectional images can be obtained during cardiac catheterization and used to calculate LV volumes by Simpson's rule. This technique may be an alternative to contrast LV angiography. METHODS AND RESULTS A beating-heart in vivo model was created to measure LV volume directly and continuously with an intracavity high-compliance latex balloon connected to a calibrated extracardiac reservoir in eight dogs in 35 experimental stages. A 10F ICUS catheter with a 10-MHz single-element transducer was introduced retrogradely via the aortic valve to the apex. Series of sequential LV cross-sectional images were recorded from the apex to the base during a calibrated pullback of the catheter. At each 5-mm interval, the LV cross section was traced at end diastole and end systole. LV volume was calculated by Simpson's rule by integrating all segmental areas multiplied by segmental height. The effect on accuracy of selecting 5-, 10-, or 15-mm heights or a single section at the midventricular level for measurement was assessed. The influence of distorted ventricular shape on the accuracy of ICUS measurements of LV volume was evaluated. This method was applied in 19 experimental stages in 10 intact dogs and pigs catheterized via the femoral artery. In the in vivo canine model, LV end-diastolic volume, end-systolic volume, and EF determined by ICUS using 5-, 10-, or 15-mm segments were not different from the actual measurements. But correlation and agreement between ICUS end-diastolic volume and direct measurements for 5- and 10-mm segments were significantly better than for 15-mm segments or a single section. Similar excellent correlations and agreement were observed for actual and ICUS-derived end-systolic volumes using 5-, 10-, or 15-mm segments. The ICUS-derived EF correlated very well with actual EF with a small measurement error of 3.91 +/- 2.59% for 5-mm or 4.13 +/- 2.79% for 10-mm segments but a significantly greater measurement error for 15-mm segments (5.35 +/- 3.76%) or single sections (14.8 +/- 12.2%). The presence of LV infarction or aneurysm did not significantly influence the accuracy of ICUS calculations for segmental heights < or = 10 mm. Application in intact animals demonstrated a good correlation between stroke volume measured by ICUS and by thermodilution or flowmeter. ICUS-derived LV volumes correlated well with biplane angiographic volumes, with a tendency toward underestimation. There was no significant difference between ICUS-determined LV EF and EF determined by angiography. CONCLUSIONS Intracardiac echocardiography accurately measures LV volumes and global systolic function in both regularly shaped and distorted left ventricles. This technique directly and continuously visualizes circumferential LV endocardium and wall thickness without contrast agents or geometric assumptions for calculation of LV volume. Thus, it should be particularly useful in patients at high risk for contrast-related complications or distorted LV shapes in which geometric assumptions may not be valid.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3