Effect of myocardial fiber direction on epicardial potentials.

Author:

Taccardi B1,Macchi E1,Lux R L1,Ershler P R1,Spaggiari S1,Baruffi S1,Vyhmeister Y1

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research and Training Institute, Utah University Medical School, Salt Lake City.

Abstract

BACKGROUND Understanding the relations between the architecture of myocardial fibers, the spread of excitation, and the associated ECG signals is necessary for addressing the forward problem of electrocardiography, that is, predicting intracardiac and extracardiac ECGs from known intracardiac activity. So far, these relations have been studied experimentally only in small myocardial areas. In this study, we tested the hypothesis that potential distributions measured over extensive epicardial regions during paced beats reflect the direction of superficial and intramural fibers through which excitation is spreading in both the initial and later stages of ventricular excitation. We also tried to establish whether the features of the epicardial potential distribution that correlate with fiber direction vary as a function of pacing site, intramural pacing depth, and time elapsed after the stimulus. An additional purpose was to compare measured epicardial potentials with recently published numerical simulations depicting the three-dimensional spread of excitation in the heart muscle and the associated potential fields. METHODS AND RESULTS The hearts of 18 mongrel dogs were exposed and 182 to 744 unipolar electrograms were recorded from epicardial electrode arrays (2.3 x 3.0 to 6.5 x 6.5 cm). Hearts were paced at various intramural depths through an intramural needle. The overall number of pacing sites in 18 dogs was 241. Epicardial potential distributions, electrographic waveforms, and excitation time maps were displayed, and fiber directions in the ventricular wall underlying the electrodes were determined histologically. During the early stages of ventricular excitation, the position of the epicardial maxima and minima revealed the orientation of myocardial fibers near the pacing site in all cases of epicardial and intramural pacing and in 60% of cases of endocardial or subendocardial pacing. During later stages of propagation, the rotation and expansion of the positive areas correlated with the helical spread of excitation through intramurally rotating fibers. Marked asymmetry of potential patterns probably reflected epicardial-endocardial obliqueness of intramural fibers. Multiple maxima appeared in the expanding positive areas. CONCLUSIONS For 93% of pacing sites, results verified our hypothesis that epicardial potential patterns elicited by ventricular pacing reflect the direction of fibers through which excitation is spreading during both the initial and later stages of propagation. Epicardial potential distributions provided information on the site of origin and subsequent helical spread of excitation in an epicardial-endocardial, endocardial-epicardial, or double direction. Results were in agreement with previously published numerical simulations except for the asymmetry and fragmentation of the positive areas.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3