Affiliation:
1. From the Cardiovascular Division, Washington University School of Medicine, St Louis, Mo, and the Cardiovascular Division, the University of Vermont College of Medicine, Burlington.
Abstract
Background
Plasminogen activator inhibitor type 1 (PAI-1), the primary physiological inhibitor of endogenous plasminogen activators, has been implicated as a potentiating factor in atherogenesis as well as in coronary thrombosis. We and others have observed attenuation of PAI-1 expression by gemfibrozil both in vivo and in vitro.
Methods and Results
To determine whether other lipid-lowering agents with different mechanisms of action exert similar effects, we exposed Hep G2 cells, a highly differentiated human hepatoma cell line, to selected concentrations of niacin. Accumulation of PAI-1 protein, assayed with an ELISA, decreased in conditioned media by 72% in 48 hours in a specific, concentration-dependent fashion. Metabolic labeling experiments demonstrated a decrease in the rate of PAI-1 synthesis. Northern blot analysis demonstrated a preceding, parallel, and specific decrease in the concentration of PAI-1 mRNA. Niacin attenuated the increased PAI-1 synthesis induced by mediators released from thrombi as well. Thus, with 4.25 ng/mL transforming growth factor-β
1
, PAI-1 accumulation increased 4.5-fold in conditioned media in 48 hours. However, niacin attenuated the increase by 65%. Again, both the rate of PAI-1 synthesis and PAI-1 mRNA were reduced. The increased plasma PAI-1 activity and PAI-1 mRNA in liver induced by dexamethasone (0.8 mg IP) in vivo in rats were attenuated by 3 weeks of pretreatment with niacin.
Conclusions
These results suggest that niacin, by decreasing PAI-1 expression, may potentiate fibrinolysis, thereby decreasing the stimulation of atherogenesis by clot-associated mitogens associated with microthrombi. Furthermore, the results imply that a pathogenetic link may exist between intracellular lipid metabolism and regulation of expression of fibrinolytic system components.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献