Role of microtubules in contractile dysfunction of hypertrophied cardiocytes.

Author:

Tsutsui H1,Tagawa H1,Kent R L1,McCollam P L1,Ishihara K1,Nagatsu M1,Cooper G1

Affiliation:

1. Department of Medicine, Medical University of South Carolina, Charleston.

Abstract

Cardiac hypertrophy in response to systolic pressure overloading frequently results in contractile dysfunction, the cause for which has been unknown. Since, in contrast, the same degree and duration of hypertrophy in response to systolic volume overloading does not result in contractile dysfunction, we postulated that the contractile dysfunction of pressure hypertrophied myocardium might result from a direct effect of stress as opposed to strain loading on an intracellular structure of the hypertrophied cardiocyte. The specific hypothesis tested here is that the microtubule component of the cytoskeleton is such an intracellular structure, which, forming in excess, impedes sarcomere motion. The feline right ventricle was either pressure overloaded by pulmonary artery banding or volume overloaded by atrial septotomy. The quantity of microtubules was estimated from immunoblots and immunofluorescent micrographs, and their mechanical effects were assessed by measuring sarcomere motion during microtubule depolymerization. We show here that stress loading increases the microtubule component of the cardiac muscle cell cytoskeleton; this apparently is responsible for the entirety of the cellular contractile dysfunction seen in our model of pressure-hypertrophied myocardium. No such effects were seen in right ventricular cardiocytes from normal or volume-overloaded cats or in left ventricular cardiocytes from any group of cats. Importantly, the linked microtubule and contractile abnormalities are persistent and thus may be found to have significance for the deterioration of initially compensatory cardiac hypertrophy into the congestive heart failure state.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3