Effects of Endovascular Radiation From a β-Particle–Emitting Stent in a Porcine Coronary Restenosis Model

Author:

Carter Andrew J.1,Laird John R.1,Bailey Lynn R.1,Hoopes Timothy G.1,Farb Andrew1,Fischell David R.1,Fischell Robert E.1,Fischell Tim A.1,Virmani Renu1

Affiliation:

1. Hematology and Vascular Biology, Walter Reed Army Institute of Research Cardiology Service, Walter Reed Army Medical Center, and The Armed Forces Institute of Pathology, Washington, DC; and the Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tenn (T.A.F.).

Abstract

Background Neointimal formation causes restenosis after intracoronary stent placement. Endovascular radiation delivered via a stent has been shown to reduce neointimal formation after placement in porcine and rabbit iliac arteries. The objective of this study was to evaluate the dose-related effects of a β-particle–emitting radioactive stent in a porcine coronary restenosis model. Methods and Results Thirty-seven swine underwent placement of 35 nonradioactive and 39 β-particle–emitting stents with activity levels of 23.0, 14.0, 6.0, 3.0, 1.0, 0.5, and 0.15 μCi of 32 P. Treatment effect was assessed by histological analysis 28 days after stent placement. Neointimal and medial smooth muscle cell density were inversely related to increasing stent activity. The neointima of the high-activity (3.0- to 23.0-μCi) stents consisted of fibrin, erythrocytes, occasional inflammatory cells, and smooth muscle cells with partial endothelialization of the luminal surface. In the 1.0-μCi stents, the neointima was expanded and consisted of smooth muscle cells and a proteoglycan-rich matrix. The neointima of the low-activity (0.15- and 0.5-μCi) stents was composed of smooth muscle cells and matrix with complete endothelialization of the luminal surface. At low and high stent activities, there was a reduction in neointimal area (low, 1.63±0.67 mm 2 and high, 1.73±0.97 mm 2 versus control, 2.40±0.87 mm 2 ) and percent area stenosis (low, 26±7% and high, 26±12%) compared with control stents (37±12%, P ≤.01). The 1.0-μCi stents, however, had greater neointimal formation (4.67±1.50 mm 2 ) and more luminal narrowing (64±16%) than the control stents ( P <.0001). Conclusions The differential response to the doses of continuous β-particle irradiation used in this experimental model suggests a complex biological interaction of endovascular radiation and vascular repair after stent placement. Further study is required to determine the clinical potential for this therapy to prevent stent restenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3