Mechanism of efficacy of 2-amino oleic acid for inhibition of calcification of glutaraldehyde-pretreated porcine bioprosthetic heart valves.

Author:

Chen W1,Schoen F J1,Levy R J1

Affiliation:

1. Division of Pediatric Cardiology, University of Michigan Medical Center, Ann Arbor 48109-0576.

Abstract

BACKGROUND Calcification is a frequent cause of the clinical failures of glutaraldehyde-pretreated bioprosthetic heart valves (BPHV) fabricated from glutaraldehyde-cross-linked porcine aortic valves. 2-Amino oleic acid (AOA) has been shown in previous in vivo studies to be a promising anticalcification agent. Our objective was to investigate the mechanism of calcification inhibition mediated by AOA pretreatment of porcine aortic valve bioprostheses. METHODS AND RESULTS BPHV tissues were treated with an AOA solution for 72 hours before experimentation. The diffusion of AOA across both cusp and aortic wall was evaluated. The lag time for AOA to diffuse across the aortic wall was prolonged compared with that of the cusp. An extraction study was performed to determine the stability of AOA binding; the results indicated that the binding was relatively stable regardless of solvent extraction conditions. The interaction between ionic calcium and AOA on treated tissue also was investigated by evaluating the patterns of calcium diffusion across both treated and untreated tissues. The results showed that AOA significantly reduced the diffusion of calcium. AOA inhibition of aortic valve calcification (calcium level, 5.5 +/- 3.0 mg/g of tissue compared with control; calcium level, 91.2 +/- 19.5 mg/g of tissue) but not aortic wall (calcium level, 158.7 +/- 10.3 mg/g of tissue compared with control; calcium level, 157.5 +/- 7.9 mg/g of tissue) was demonstrated on representative specimens from valves implanted in left ventricular apicoaortic shunts explanted after 150 days. CONCLUSIONS AOA covalently binds to glutaraldehyde-pretreated bioprosthetic heart valve tissue, presumably as the result of an aldehyde-amino reaction. Covalently bound AOA diminishes Ca2+ diffusion compared with non-AOA-pretreated bioprosthetic tissues. This may explain in part the anticalcification mechanism of AOA. Furthermore, AOA inhibits calcification of porcine BPHV cusps in the circulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference32 articles.

1. Pathological considerations in replacement cardiac valves

2. Biological determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats;Levy RJ;Am J Pathol.,1983

3. Failure of porcine aortic and bovine pericardial prosthetic valves: an experimental investigation in young sheep;Barnhart GR;Circulation.,1982

4. Porcine Bioprosthetic Valve Calcification in Bovine Left Ventricle-Aorta Shunts: Studies of the Deposition of Vitamin K-Dependent Proteins

5. Role of mechanical stress in calcification of aortic bioprosthetic valves;Thubrikar MJ;J Thorac Cardiovasc Surg.,1983

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3