Evidence for Angiotensin-Converting Enzyme– and Chymase-Mediated Angiotensin II Formation in the Interstitial Fluid Space of the Dog Heart In Vivo

Author:

Wei Chih-Chang1,Meng Qing C.1,Palmer Ronald1,Hageman Gilbert R.1,Durand Joan1,Bradley Wayne E.1,Farrell Diane M.1,Hankes Gerald H.1,Oparil Suzanne1,Dell’Italia Louis J.1

Affiliation:

1. From the Birmingham Veteran Affairs Medical Center, Department of Medicine, Hypertension and Vascular Biology Program, Division of Cardiovascular Disease, Department of Physiology and Biophysics, University of Alabama at Birmingham, and Auburn College of Veterinary Medicine, Auburn, Alabama.

Abstract

Background —We have previously demonstrated that angiotensin II (Ang II) levels in the interstitial fluid (ISF) space of the heart are higher than in the blood plasma and do not change after systemic infusion of Ang I. In this study, we assess the enzymatic mechanisms (chymase versus ACE) by which Ang II is generated in the ISF space of the dog heart in vivo. Methods and Results —Cardiac microdialysis probes were implanted in the left ventricular (LV) myocardium (3 to 4 probes per dog) of 12 anesthetized open-chest normal dogs. ISF Ang I and II levels were measured at baseline and during ISF infusion of Ang I (15 μmol/L, n=12), Ang I+the ACE inhibitor captopril (cap) (2.5 mmol/L, n=4), Ang I+the chymase inhibitor chymostatin (chy) (1 mmol/L, n=4), and Ang I+cap+chy (n=4). ISF infusion of Ang I increased ISF Ang II levels 100-fold ( P <0.01), whereas aortic and coronary sinus plasma Ang I and II levels were unaffected and were 100-fold lower than ISF levels. Compared with ISF infusion of Ang I alone, Ang I+cap (n=4) produced a greater reduction in ISF Ang II levels than did Ang I+chy (n=4) (71% versus 43%, P <0.01), whereas Ang I+cap+chy produced a 100% decrease in ISF Ang II levels. Conclusions —This study demonstrates for the first time a very high capacity for conversion of Ang I to Ang II mediated by both ACE and chymase in the ISF space of the dog heart in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3