A New Control Volume Method for Calculating Valvular Regurgitation

Author:

Walker Peter G.1,Oyre Steen1,Pedersen Erik M.1,Houlind Kim1,Guenet Frederique S. A.1,Yoganathan Ajit P.1

Affiliation:

1. From Department of Thoracic and Cardiovascular Surgery and MR Centre, Institute of Experimental Clinical Research, Aarhus University Hospital (S.O., E.M.P., K.H.), Skejby Sygehus, Aarhus, Denmark; and School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Ga.

Abstract

Background The purpose of the present study was to develop a new method of measuring heart valvular regurgitation based on control volume theory and to verify its accuracy in vitro and in vivo. Current methods of quantifying valvular regurgitation rely too much on assumptions about the flow field and therefore are difficult to apply in vivo. In particular, the proximal isovelocity surface area (PISA) method oversimplifies the proximal velocity field by assuming hemispherical isovelocity contours proximal to the orifice. This severely limits the applicability of the PISA method. Use of the basic control volume theory, however, removes the need to assume the manner in which the proximal flow accelerates toward the regurgitant orifice, the shape and size of the orifice, the shape of the orifice plate, and the non-newtonian behavior of the fluid. Apart from a correction that is necessary if the orifice plate is moving, the control volume method assumes only the incompressibility of the fluid and therefore is a potentially more accurate approach. In addition, the use of magnetic resonance imaging (MRI) precludes the need for an acoustic window. Methods and Results MRI has been used to measure the three-dimensional velocity field proximal to regurgitant orifices, including single and multiple orifices and a cone-shaped orifice plate. Both steady (0 to 7.5 L/min) and pulsatile (2 and 3 L/min) flows were used. By integrating this velocity over a control volume surrounding the orifice, we calculated the flow rate through the orifice. As a validation, the cardiac output of a 50-kg pig also was measured and was compared with thermodilution measurements. It was found that MRI could be used to measure the three-dimensional flow proximal to regurgitant orifices. This enabled the calculation of the flow rate through the orifice by integrating the velocity over the surface of a control volume covering the orifice. This flow rate correlated well with the actual flow rate (0.992; correlation line slope, 1.01). Care had to be taken, however, to exclude from the integration regions of aliased velocity. The cardiac output of the pig measured using MRI was in close agreement with the thermodilution measurements. Conclusions Our new method of measuring valvular regurgitation has been shown to be very accurate in vitro and in vivo and therefore is a potentially accurate way to quantify valvular regurgitation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normal Cardiac Anatomy;Cardiovascular Magnetic Resonance;2019

2. Diagnosis and Management of Valvular Heart Disease;Hospital Medicine Clinics;2014-07

3. Highly accelerated cardiac cine phase-contrast MRI using an undersampled radial acquisition and temporally constrained reconstruction;Journal of Magnetic Resonance Imaging;2013-04-30

4. Flow Measurement;Handbook of Measurement in Science and Engineering;2013-01-04

5. Normal Cardiac Anatomy, Orientation, and Function;Cardiovascular Magnetic Resonance;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3