Guidance of Radiofrequency Endocardial Ablation With Real-time Three-dimensional Magnetic Navigation System

Author:

Shpun Shlomo1,Gepstein Lior1,Hayam Gal1,Ben-Haim Shlomo A.1

Affiliation:

1. From the Cardiovascular System Laboratory, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

Abstract

Background Ablation therapy for certain arrhythmias requires the formation of complex lesions based on electrical and anatomic mapping. We tested the accuracy and reproducibility of a nonfluoroscopic mapping and navigation (NFM) system to guide delivery of radiofrequency (RF) energy in the right atrium (RA) of swine. Methods and Results The NFM system uses an ultralow magnetic field to measure the real-time three-dimensional (3D) location of the tip of the locatable catheter. While in stable contact with the endocardium, between 30 and 40 consecutive tip locations were sampled and used for the 3D reconstruction of the RA geometry. The location of the catheter tip was presented in real time, superimposed over the RA geometry. We selected a point on the 3D reconstruction and delivered RF energy to that site via the tip of the locatable catheter. The catheter was then completely withdrawn and renavigated twice to the same point, at which RF energy was delivered again. At autopsy, the distance between the centers of the three ablation points (mean±SEM) was 2.3±0.5 mm (n=27). Similarly, we used the NFM system to guide the generation of linear lesions. The measured length of the linear lesions on the NFM 3D view was close to the actual lesion length measured at autopsy (correlation coefficient, .96; P =.002; n=6). Furthermore, the location, shape, and continuity of the linear lesions corresponded to the autopsy findings. Conclusions We conclude that the NFM system can guide the application of RF energy without the use of fluoroscopy in a highly accurate and reproducible manner.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3