Gene Therapy for Cardiovascular Disease

Author:

Khurana Rohit1,Martin John F.1,Zachary Ian1

Affiliation:

1. From the Center for Cardiovascular Biology and Medicine, Department of Medicine, University College London, London, United Kingdom.

Abstract

There is currently intense interest in the development of gene therapy for cardiovascular disease. The stimulation of therapeutic angiogenesis for ischemic heart disease has been one of the areas of greatest promise. Encouraging results have been obtained with the angiogenic cytokines vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in animal models, leading to clinical trials in ischemic heart disease. VEGF also has therapeutic potential in a second area of cardiovascular gene therapy, the enhancement of arterioprotective endothelial functions to prevent postangioplasty restenosis and bypass graft arteriopathy. The endothelial cell growth and survival functions of VEGF promote endothelial regeneration, whereas VEGF-induced endothelial production of NO and prostacyclin inhibits vascular smooth muscle cell proliferation. Inhibition of neointimal hyperplasia may also be achieved by gene transfer of endothelial NO synthase (eNOS), PGI synthase, or cell cycle regulators (retinoblastoma, cyclin or cyclin-dependent kinase inhibitors, p53, growth arrest homeobox gene, fas ligand) or antisense oligonucleotides to c-myb , c-myc , proliferating cell nuclear antigen, and transcription factors such as nuclear factor κB and E2F. An improved understanding of etiologically complex pathologies involving the interplay of genes and the environment, such as atherosclerosis and systemic hypertension, has led to the identification of new targets for gene therapy, with the potential to alleviate inherited genetic defects such as familial hypercholesterolemia. The use of vasodilator gene overexpression and antisense knockdown of vasoconstrictors to reduce blood pressure in animal models of systemic and pulmonary hypertension offers the prospect of gene therapy for human hypertensive disease. The renin-angiotensin system has been the target of choice for antihypertensive strategies because of its wide distribution and additional effects on fibrinolytic and oxidative stress pathways. Gene therapy in cardiovascular disease has an exciting future but remains at an early stage. Further developments in gene transfer vector technology and the identification of additional target genes will be required before its full therapeutic potential can be realized.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3