Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages.

Author:

Hoff H F1,O'Neil J1,Chisolm G M1,Cole T B1,Quehenberger O1,Esterbauer H1,Jürgens G1

Affiliation:

1. Department of Atherosclerosis Research, Cleveland Clinic Foundation, OH 44106.

Abstract

There is indirect evidence that the oxidation of low density lipoprotein (LDL) may be involved in the development of atherosclerosis. Modification of LDL by oxidation may lead to its unregulated uptake by intimal macrophages to form foam cells. Because of the complexity of events occurring during LDL oxidation, we have tested whether LDL modified directly with 4-hydroxynonenal (HNE), a major propagation product formed during lipid peroxidation and known to be present in oxidized LDL, could bring about lipid loading of macrophages. Modification was accomplished by incubating LDL with various concentrations of HNE up to 7.5 mM. When LDL was derivatized with lower concentrations of HNE, concentration-dependent increases were observed in the covalent binding of HNE to apolipoprotein B (apo B), the blockage of the epsilon-amino groups on lysine residues of apo B, and the relative electrophoretic mobility of LDL. Decreases were observed in degradation of the modified LDL by the J774 cell line, mouse peritoneal macrophages, and smooth muscle cells. Modification of LDL by incubation with the higher concentrations of HNE resulted in LDL aggregation. This modification was associated with marked increases in the macrophage degradation of LDL. Degradation of aggregated HNE-modified LDL increased linearly with incubation time, leading to lipid loading of these cells as observed by oil red O staining and cholesterol accumulation. Uptake appeared to occur by phagocytosis, since cytochalasin D, an inhibitor of phagocytosis, quantitatively inhibited uptake and degradation of labeled HNE LDL. Uptake did not appear to be mediated by either the LDL receptor or the scavenger receptor, since competition with excess amounts of LDL or acetyl LDL failed to inhibit degradation of labeled, aggregated HNE LDL. Saturation of degradation of HNE LDL by macrophages could be attributed, in part, to steric hindrance, since both excess HNE LDL and other particulate ligands could inhibit this degradation. These studies suggest that interaction of LDL with HNE formed during lipid peroxidation could be responsible for structural modifications leading to unregulated uptake of the lipoprotein by tissue macrophages. This could partially explain lipid loading or foam cell formation in atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3