Inhibition of Hydroxymethylglutaryl-Coenzyme A Reductase Reduces Th1 Development and Promotes Th2 Development

Author:

Hakamada-Taguchi Rie1,Uehara Yoshio1,Kuribayashi Kagemasa1,Numabe Atsushi1,Saito Kanako1,Negoro Hideyuki1,Fujita Toshiro1,Toyo-oka Teruhiko1,Kato Takuma1

Affiliation:

1. From the Health Service Center (R.H.-T., Y.U., H.N., T.T.) and Department of Medicine (Y.U., H.N., T.F., T.T.), University of Tokyo, Tokyo, Japan; Department of Bioregulation (K.K., K.S., T.K.), Mie University School of Medicine, Mie, Japan; and Department of Clinical Laboratory Medicine and Institute of Medical Science (A.N.), Dokkyo University School of Medicine, Tochigi, Japan.

Abstract

Several prospective clinical studies have indicated that hydroxymethylglutaryl-coenzyme A reductase inhibitors, statins, prevent cardiovascular events in part through their antiinflammatory properties. Because inflammation is positively and negatively regulated by T helper (Th) 1 cells and Th2 cells, respectively, we examined the effects of statins on the Th polarization in vitro and in vivo. Here we demonstrated that the statins tested, ie, cerivastatin, simvastatin, lovastatin, and atorvastatin, promoted Th2 polarization through both inhibition of Th1 development and augmentation of Th2 development of CD4 + T cells primed in vitro with anti-CD3 antibody and splenic antigen-presenting cells. Cerivastatin exerted most potent effect on modulation of Th1/Th2 development, and the effect was completely abrogated by an addition of mevalonate. Consistent with in vitro experiments, cerivastatin treatment decreased IFN-γ production of lymph node cells from mice immunized with ovalbumin emulsified in complete Freund’s adjuvant, indicating that Th1 development is also suppressed in an in vivo proinflammatory environment. In this murine model, cerivastatin significantly reduced mesangial matrix expansion of glomeruli in the kidney and attenuated proteinuria. The decrease of glomerular sclerosis by cerivastatin treatment was positively related to the suppression of interferon (IFN)-γ–producing Th1 response in draining lymph node cells. Hence, these findings strongly suggest that statins’ inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase regulates Th1/Th2 polarization in vivo and such a mechanism possibly plays a pathophysiological role in immune-related glomerular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3