Heparin-II Domain of Fibronectin Is a Vascular Endothelial Growth Factor-Binding Domain

Author:

Wijelath Errol S.1,Rahman Salman1,Namekata Mayumi1,Murray Jacqueline1,Nishimura Tomoaki1,Mostafavi-Pour Zohreh1,Patel Yatin1,Suda Yasuo1,Humphries Martin J.1,Sobel Michael1

Affiliation:

1. From the Department of Surgery (E.S.W., M.N., J.M., M.S.), Division of Vascular Surgery, Veterans Affairs Puget Sound Health Care System and the University of Washington School of Medicine, Seattle; The Thrombosis and Vascular Remodeling Laboratory (S.R., Y.P.), Kings College London School of Medicine at St. Thomas Hospital, London, UK; Department of Nanostructure and Advanced Materials (T.N., Y.S.), Graduate School of Science and Engineering and Venture Business Laboratory, Kagoshima University,...

Abstract

We describe extracellular interactions between fibronectin (Fn) and vascular endothelial growth factor (VEGF) that influence integrin-growth factor receptor crosstalk and cellular responses. In previous work, we found that VEGF bound specifically to fibronectin (Fn) but not vitronectin or collagens. Herein we report that VEGF binds to the heparin-II domain of Fn and that the cell-binding and VEGF-binding domains of Fn, when physically linked, are necessary and sufficient to promote VEGF-induced endothelial cell proliferation, migration, and Erk activation. Using recombinant Fn domains, the C-terminal heparin-II domain of Fn (type III repeats 13 to 14) was identified as a key VEGF-binding site. Mutation of the heparin-binding residues on FnIII 13–14 abolished VEGF binding, and peptides corresponding to the heparin-binding sequences in FnIII 13–14 inhibited VEGF binding to Fn. Fn fragments containing both the α 5 β 1 integrin-binding domain (III 9 to 10) and the VEGF-binding domain (III 13 to 14) significantly enhanced VEGF-induced EC migration and proliferation and induced strong phosphorylation of the VEGF receptor and Erk. Neither the cell-binding or VEGF-binding fragment of Fn alone had comparable VEGF-promoting effects. These results suggest that the mechanism of VEGF/Fn synergism is mediated extracellularly by the formation of a novel VEGF/Fn complex requiring both the cell-binding and VEGF-binding domains linked in a single molecular unit. These data also highlight a new function for the Fn C-terminal heparin-binding domain that may have important implications for angiogenesis and tumor growth.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3