Modification of PI3K- and MAPK-Dependent Chemotaxis in Aortic Vascular Smooth Muscle Cells by Protein Kinase C βII

Author:

Campbell Malcolm1,Trimble Elisabeth R.1

Affiliation:

1. From the Department of Clinical Biochemistry and Metabolic Medicine, Queen’s University Belfast, Institute of Clinical Science, Royal Victoria Hospital, Belfast, UK; and Department of Clinical Biochemistry, The Royal Group of Hospitals, Belfast, UK.

Abstract

Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-β receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC α and PKC βII levels were increased in 25 mmol/L glucose. However, only PKC βII inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-β receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC βII were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC βII inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC βII was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC βII -dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3