Reconstituted High-Density Lipoprotein Inhibits Thrombin-Induced Endothelial Tissue Factor Expression Through Inhibition of RhoA and Stimulation of Phosphatidylinositol 3-Kinase but not Akt/Endothelial Nitric Oxide Synthase

Author:

Viswambharan Hema1,Ming Xiu-Fen1,Zhu Shengsi1,Hubsch Alphonse1,Lerch Peter1,Vergères Guy1,Rusconi Sandro1,Yang Zhihong1

Affiliation:

1. From the Department of Medicine, Divisions of Physiology (H.V., X.-F.M., S.Z., Z.Y.) and Biochemistry (S.R.), University of Fribourg, Fribourg, Switzerland; and ZLB Bioplasma AG (A.H., P.L., G.V.), Bern, Switzerland.

Abstract

Endothelial cells express negligible amounts of tissue factor (TF) that can be induced by thrombin, which is important for acute coronary syndromes. Recent research suggests that endothelial TF expression is positively regulated by RhoA and p38 mapk , but negatively by Akt/endothelial nitric oxide synthase (eNOS) pathway. High-density lipoprotein (HDL) is atheroprotective and exerts antiatherothrombotic effect. This study investigated the effect of a reconstituted HDL (rHDL) on endothelial TF expression induced by thrombin and the underlying mechanisms. In cultured human umbilical vein and aortic endothelial cells, thrombin (4 U/mL, 4 hours) increased TF protein level, which was reduced by rHDL (0.1 mg/mL, 43% inhibition, n=3 to 7, P <0.01). Activation of RhoA but not p38 mapk by thrombin was prevented by rHDL. rHDL stimulated Akt/eNOS pathway. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 abolished the activation of Akt/eNOS and reversed the inhibitory effect of rHDL on TF expression. Adenoviral expression of the active PI3K mutant (p110) reduced TF expression stimulated by thrombin without inhibiting RhoA activation, whereas expression of the active Akt mutant (m/p) further facilitated TF upregulation by thrombin. Moreover, a dominant-negative Akt mutant (KA) reduced thrombin’s effect and did not reverse the rHDL’s inhibitory effect on TF expression. Inhibition of eNOS by N ω -nitro- l -arginine methyl ester (100 μmol/L) did not affect the rHDL’s effect. In conclusion, rHDL inhibits thrombin-induced human endothelial TF expression through inhibition of RhoA and activation of PI3K but not Akt/eNOS. These findings implicate a novel mechanism of antiatherothrombotic effects of HDL.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Platelets in Thrombosis and Atherosclerosis;The American Journal of Pathology;2024-09

2. HDL maturation and remodelling;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids;2022-04

3. HDL and Sepsis;HDL Metabolism and Diseases;2022

4. HDL and Endothelial Function;HDL Metabolism and Diseases;2022

5. The Role of High-Density Lipoprotein in COVID-19;Frontiers in Pharmacology;2021-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3