Heterocellular Contact at the Myoendothelial Junction Influences Gap Junction Organization

Author:

Isakson Brant E.1,Duling Brian R.1

Affiliation:

1. From the Cardiovascular Research Center (B.E.I., B.R.D.) and Department of Molecular Physiology and Biological Physics (B.R.D.), University of Virginia School of Medicine, Charlottesville.

Abstract

Heterocellular communication between vascular smooth muscle cells (VSMC) and endothelial cells (EC) at the myoendothelial junction (MEJ) is a critical part of control of the arteriolar wall. We have developed an in vitro model of the MEJ composed of primary cultures of murine EC and VSMC. Immunoctytochemistry and immunoblots demonstrated Cx37 and Cx43 in both cell types, whereas Cx40 was found only in EC. Cx37 was excluded from the MEJ in both EC and VSMC. Connexin composition as well as functionality of the gap junctions at the MEJ was assessed by measuring diffusional transfer of biocytin and Cy3. Using connexin-specific blockers and manipulations of expression of individual connexin proteins, we confirmed that Cx37 is not a part of EC–VSMC coupling, and we demonstrated that heterotypic gap junctions are functional at the MEJ. We speculate that specific gap junction organization may be a vital component of EC–VSMC contact at the MEJ.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3