Glycated Collagen I Induces Premature Senescence-Like Phenotypic Changes in Endothelial Cells

Author:

Chen Jun1,Brodsky Sergey V.1,Goligorsky David M.1,Hampel Dierk J.1,Li Hong1,Gross Steven S.1,Goligorsky Michael S.1

Affiliation:

1. From the Departments of Medicine, Physiology and Biophysics, and Program in Biomedical Engineering (J.C., S.V.B., D.M.G, D.J.H., H.L., M.S.G.), State University of New York, Stony Brook, NY; and the Department of Pharmacology (S.S.G.), Weill Medical College at Cornell University, New York, NY.

Abstract

Diabetic vasculopathy is central to the development of diverse cardiovascular, renal, retinal, and neurological complications of diabetes. We previously demonstrated that growth of endothelial cells on glycated extracellular matrix proteins (collagen and matrigel) results in a significant decrease in cell proliferation. In the present study, we show that early-passage human umbilical vein endothelial cells (HUVECs) grown on glycated collagen (GC) express hallmarks of premature cell senescence, ie, increase in the proportion of cells expressing senescence-associated β-galactosidase activity, apoptotic rate, and p53 and p14 AFR expression, but in contrast to replicative senescence, display neither attrition of telomeres nor decrease in telomerase activity. An increased frequency of prematurely senescent cells was similarly observed in vivo in aortae of young Zucker diabetic rats, compared with lean controls. NO production by HUVECs grown on GC was decreased, despite a 3-fold increase in eNOS expression and was associated with the increased nitrotyrosine-modified proteins. Development of premature senescence of HUVECs on GC could be prevented and reversed by treatments with the peroxynitrite scavenger, ebselen, eNOS intermediate N ω -hydroxy- l -arginine (NOHA), or superoxide dismutase mimetic Mn-TBAP. Concomitant with the reversal of senescence, ebselen, and NOHA each restored NO production to levels observed with HUVECs grown on unmodified collagen. Our findings indicate that diabetes mellitus in vivo and GC exposure in vitro elicit premature senescence of the vascular endothelium, a process with distinct pathogenetic mechanisms. Premature senescence of the vascular endothelium is hypothesized to be an important contributor to diabetic vasculopathy and a consequence of reduced NO availability, peroxynitrite, and/or superoxide excess.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3