Constitutive Endocytosis of CD163 Mediates Hemoglobin-Heme Uptake and Determines the Noninflammatory and Protective Transcriptional Response of Macrophages to Hemoglobin

Author:

Schaer Christian A.1,Schoedon Gabriele1,Imhof Alexander1,Kurrer Michael O.1,Schaer Dominik J.1

Affiliation:

1. From the Departments of Medicine (C.A.S., G.S., A.I., D.J.S.) and Pathology (M.O.K.), University Hospital, Zurich, Switzerland.

Abstract

Heme toxicity contributes to the pathogenesis of chronic inflammatory diseases, atherosclerosis, and hemolysis associated vasculopathy. Macrophage clearance of cell free hemoglobin (Hb) is thus an essential homeostatic function of these cells. We examined the transcriptional response of human PBMC derived macrophages to Hb by gene array analysis. The observed noninflammatory macrophage response was characterized by induction of an antioxidative and antiinflammatory gene expression pattern with most prominent induction of the inducible heme oxygenase (HO-1). The metabolically active Hb-CD163-HO-1 pathway resulted in synthesis of ferritin—1 of the antioxidative and antiinflammatory end products linked to heme breakdown by HO-1. This response was mediated by the Hb scavenger receptor CD163 and heme and was not related to Hb mediated depletion of reduced glutathione. In contrast to other cellular responses induced by CD163, there was no role of protein phosphorylation dependent CD163 signaling in the protective macrophage response to Hb. Instead, CD163 acted as an Hb transporter, which undergoes constitutive and ligand independent internalization and recycling between the cell surface and early endosomes. The expression of CD163 and HO-1 in macrophages of neovascularized atherosclerotic lesions suggests that the pathway described herein is active in vivo. Noninflammatory Hb clearance and intimately linked HO-1 expression may provide the long sought-after explanation for the antiinflammatory activity associated with CD163-positive macrophages.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3