Sustained Reentry in the Left Ventricle of Fibrillating Pig Hearts

Author:

Rogers Jack M.1,Huang Jian1,Melnick Sharon B.1,Ideker Raymond E.1

Affiliation:

1. From the Departments of Biomedical Engineering (J.M.R., R.E.I.) and Medicine (J.H., S.B.M., R.E.I.), University of Alabama at Birmingham, Birmingham, Ala.

Abstract

It has been proposed that ventricular fibrillation (VF) is driven by sustained reentry. However, mapping studies have not detected such “mother rotors” in large mammalian hearts. We mapped VF from three 21×12 unipolar electrode arrays in 6 pigs. Two of the arrays were adjacent to each other on the left-ventricular epicardium. Electrode spacing was 2 mm. The third array consisted of 21 needles (0.5-mm diameter, 12 electrodes, 1-mm spacing) inserted in a row (2-mm spacing) between the epicardial arrays. A total of 88 5-second VF epochs were analyzed with automatic reentry detection algorithms. Although intramural reentry was sporadically present (29 total occurrences), it was always short-lived with a mean life span of 127±57 ms. However, in 3 of the 6 animals, sustained epicardial reentry (ie, reentry persisting for more than a few cycles) was consistently present, often lasting for several seconds. For each epoch, we computed indices characterizing (1) the relative duration of reentry on the two epicardial arrays ( R ), (2) the flow of wavefronts between epicardial arrays ( W ), and (3) the relative activation rates of the two epicardial arrays ( F ). R did not correlate with either W or F indicating that rotor-containing regions did not produce a net outflow of wavefronts and were not faster than neighboring regions. Thus, sustained epicardial, but not intramural, rotors were consistently present in some large animal hearts during VF. However, we found no evidence that these rotors were responsible for sustaining VF through the mechanisms outlined in the mother rotor hypothesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3