Capillary Perfusion and Wall Shear Stress Are Restored in the Coronary Circulation of Hypertrophic Right Ventricle

Author:

Huo Yunlong1,Linares Carlos O.1,Kassab Ghassan S.1

Affiliation:

1. From the Department of Biomedical Engineering, Surgery and Cellular and Integrative Physiology, Indiana University–Purdue University Indianapolis.

Abstract

It has been shown that right ventricle (RV) hypertrophy involves significant compensatory vascular growth and remodeling. The objective of the present study was to determine the functional implications of the vascular growth and remodeling through a full flow analysis of arterial tree down to first capillary segments. A computer reconstruction of RV branches including the proximal right coronary artery to the posterior descending artery was established based on measured morphometric data in arrested, vasodilated porcine heart. The flows were computed throughout the reconstructed trees based on conservation of mass and momentum and appropriate pressure boundary conditions. It was found that the flow rate was significantly increased in large epicardial coronary arteries in hypertrophic as compared with control hearts but normalized in the intramyocardial coronary arteries and smaller vessels in RV hypertrophy primarily because of the significant increase in number of arterioles. Furthermore, the wall shear stress was restored to nearly homeostatic levels throughout most of the vasculature after 5 weeks of RV hypertrophy. The compensatory remodeling in RV hypertrophy functionally restores the perfusion at the arteriolar and capillary level and wall shear stress in most of larger vessels. This is the first full analysis of coronary arterial tree, with millions of vessels, in cardiac hypertrophy that reveals the compensatory adaptation of structure to function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3