Affiliation:
1. From the Department of Biomedical Engineering, Surgery and Cellular and Integrative Physiology, Indiana University–Purdue University Indianapolis.
Abstract
It has been shown that right ventricle (RV) hypertrophy involves significant compensatory vascular growth and remodeling. The objective of the present study was to determine the functional implications of the vascular growth and remodeling through a full flow analysis of arterial tree down to first capillary segments. A computer reconstruction of RV branches including the proximal right coronary artery to the posterior descending artery was established based on measured morphometric data in arrested, vasodilated porcine heart. The flows were computed throughout the reconstructed trees based on conservation of mass and momentum and appropriate pressure boundary conditions. It was found that the flow rate was significantly increased in large epicardial coronary arteries in hypertrophic as compared with control hearts but normalized in the intramyocardial coronary arteries and smaller vessels in RV hypertrophy primarily because of the significant increase in number of arterioles. Furthermore, the wall shear stress was restored to nearly homeostatic levels throughout most of the vasculature after 5 weeks of RV hypertrophy. The compensatory remodeling in RV hypertrophy functionally restores the perfusion at the arteriolar and capillary level and wall shear stress in most of larger vessels. This is the first full analysis of coronary arterial tree, with millions of vessels, in cardiac hypertrophy that reveals the compensatory adaptation of structure to function.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献