Deletion of Microsomal Prostaglandin E Synthase-1 Increases Sensitivity to Salt Loading and Angiotensin II Infusion

Author:

Jia Zhanjun1,Zhang Aihua1,Zhang Hui1,Dong Zheng1,Yang Tianxin1

Affiliation:

1. From the Department of Internal Medicine (Z.J., A.Z., H.Z., T.Y.), University of Utah and Veterans Affairs Medical Center, Salt Lake City; Cellular Biology and Anatomy (Z.D.), Medical College of Georgia, Augusta; and Medical Research Service (Z.D.), Veterans Affairs Medical Center, Augusta, Ga.

Abstract

Microsomal prostaglandin E synthase-1 (mPGES-1), a membrane-associated protein, is critically involved in the inflammatory response and may be involved in physiological processes as well. The present study examined the role of mPGES-1 in regulation of sodium balance and blood pressure in the settings of salt loading and angiotensin II infusion. mPGES-1 −/− mice developed severe and progressive hypertension associated with an inappropriate increase in sodium balance when fed a high-salt diet. These mice exhibited a significantly impaired ability to excrete an acute enteral load of NaCl. Under these 2 settings of salt loading, urinary excretion of prostaglandin E 2 and nitrate/nitrite were remarkably increased in wild-type animals but not in mPGES-1 −/− mice. The changes of urinary cGMP paralleled that of urinary nitrate/nitrite. mPGES-1 −/− mice exhibited a remarkable inhibition of high salt–induced increase in gene expression of all 3 NO synthase isoforms, whereas these mice had upregulated expression of NO synthase III but not NO synthase I and NO synthase II at basal state. Chronic salt loading remarkably induced mPGES-1 protein expression exclusively in the distal nephron. In primary cultures of CD cells, mPGES-1 expression was significantly increased following exposure to hypertonic NaCl, in parallel with increased prostaglandin E 2 release. These findings have revealed a mPGES-1/prostaglandin E 2 /NO/cGMP pathway that appears to be critically important for salt adaptation. In addition, we provide evidence that mPGES-1 deficiency sensitized the hypertensive effect of angiotensin II. Overall, this study has characterized the natriuretic and antihypertensive role of mPGES-1 that likely contributes to blood pressure homeostasis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3