Affiliation:
1. From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark.
Abstract
MicroRNAs are naturally existing, small, noncoding RNA molecules that downregulate posttranscriptional gene expression. Their expression pattern and function in the heart remain unknown. Here we report an array of microRNAs that are differentially and temporally regulated during cardiac hypertrophy. Significantly, the muscle-specific microRNA-1 (miR-1) was singularly downregulated as early as day 1 (0.56±0.036), persisting through day 7 (0.29±0.14), after aortic constriction–induced hypertrophy in a mouse model. Overexpression experiments showed that miR-1 inhibited its in silico–predicted, growth-related targets, including Ras GTPase–activating protein (RasGAP), cyclin-dependent kinase 9 (Cdk9), fibronectin, and Ras homolog enriched in brain (Rheb), in addition to protein synthesis and cell size. Thus, we propose that microRNAs play an essential regulatory role in the development of cardiac hypertrophy, wherein downregulation of miR-1 is necessary for the relief of growth-related target genes from its repressive influence and induction of hypertrophy.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
681 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献