Mice With a Null Mutation in the NHE1 Na + -H + Exchanger Are Resistant to Cardiac Ischemia-Reperfusion Injury

Author:

Wang Yigang1,Meyer Jamie W.1,Ashraf Muhammad1,Shull Gary E.1

Affiliation:

1. From the Departments of Pathology and Laboratory Medicine (Y.W., M.A.) and Molecular Genetics, Biochemistry, and Microbiology (J.W.M., G.E.S.), University of Cincinnati College of Medicine, Cincinnati, Ohio.

Abstract

Pharmacological studies indicate that Na + -H + exchanger isoform 1 (NHE1) plays a central role in myocardial ischemia-reperfusion injury; however, confirmation by alternative methods is lacking. To address this issue, we examined the role of NHE1 in ischemia-reperfusion injury using gene-targeted NHE1-null mutant ( Nhe1 −/− ) mice. Nhe1 −/− and wild-type hearts were perfused in a Langendorff apparatus in both the absence and presence of the NHE1 inhibitor eniporide, subjected to 40 minutes of ischemia and 30 minutes of reperfusion, and the effects of genetic ablation or inhibition of NHE1 on hemodynamic, biochemical, and pathological changes were assessed. In the absence of eniporide, left ventricular developed pressure, end-diastolic pressure, and coronary flow were significantly less impaired in Nhe1 −/− hearts relative to wild-type hearts, and release of lactate dehydrogenase, morphological damage, and ATP depletion were also significantly less. In the presence of eniporide, however, wild-type hearts were significantly protected and there were no significant differences between the two genotypes with respect to cardiac performance, lactate dehydrogenase release, or morphological damage. Furthermore, the presence or absence of eniporide had no apparent effect on the degree of cardioprotection observed in Nhe1 −/− hearts. These data demonstrate that genetic ablation of NHE1 protects the heart against ischemia-reperfusion injury. In addition to providing direct evidence that confirms previous pharmacological studies indicating a role for NHE1 in ischemia-reperfusion injury, these results suggest that the long-term absence of NHE1 does not elicit major compensatory changes that might negate the cardioprotective effects of blocking its activity over the short-term.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3