Altered Expression of Small-Conductance Ca 2+ -Activated K + (SK3) Channels Modulates Arterial Tone and Blood Pressure

Author:

Taylor Mark S.1,Bonev Adrian D.1,Gross Tobias P.1,Eckman Delrae M.1,Brayden Joseph E.1,Bond Chris T.1,Adelman John P.1,Nelson Mark T.1

Affiliation:

1. From the Department of Pharmacology (M.S.T., A.D.B., T.P.G., D.M.E., J.E.B., M.T.N.), University of Vermont, Burlington, Vt, and Oregon Health Sciences University (C.T.B., J.P.A.), Portland, Ore.

Abstract

The endothelium is a critical regulator of vascular tone, and dysfunction of the endothelium contributes to numerous cardiovascular pathologies. Recent studies suggest that apamin-sensitive, small-conductance, Ca 2+ -activated K + channels may play an important role in active endothelium-dependent vasodilations, and expression of these channels may be altered in disease states characterized by vascular dysfunction. Here, we used a transgenic mouse (SK3 T/T ) in which SK3 expression levels can be manipulated with dietary doxycycline (DOX) to test the hypothesis that the level of expression of the SK subunit, SK3, in endothelial cells alters arterial function and blood pressure. SK3 protein was elevated in small mesenteric arteries from SK3 T/T mice compared with wild-type mice and was greatly suppressed by dietary DOX. SK3 was detected in the endothelium and not in the smooth muscle by immunohistochemistry. In whole-cell patch-clamp experiments, SK currents in endothelial cells from SK3 T/T mice were almost completely suppressed by dietary DOX. In intact arteries, SK3 channels contributed to sustained hyperpolarization of the endothelial membrane potential, which was communicated to the arterial smooth muscle. Pressure- and phenylephrine-induced constrictions of SK3 T/T arteries were substantially enhanced by treatment with apamin, suppression of SK3 expression with DOX, or removal of the endothelium. In addition, suppression of SK3 expression caused a pronounced and reversible elevation of blood pressure. These results indicate that endothelial SK3 channels exert a profound, tonic, hyperpolarizing influence in resistance arteries and suggest that the level of SK3 channel expression in endothelial cells is a fundamental determinant of vascular tone and blood pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3