Dynorphin B Is an Agonist of Nuclear Opioid Receptors Coupling Nuclear Protein Kinase C Activation to the Transcription of Cardiogenic Genes in GTR1 Embryonic Stem Cells

Author:

Ventura Carlo1,Zinellu Elisabetta1,Maninchedda Emiliana1,Maioli Margherita1

Affiliation:

1. From the Department of Biomedical Sciences, Center for Biotechnology Development and Biodiversity Research, Division of Biochemistry, University of Sassari, Sassari, Italy, and the National Laboratory of the National Institute of Biostructures and Biosystems, Osilo, Italy.

Abstract

The cardiac differentiation of embryonic stem (ES) cells was found to involve prodynorphin gene and dynorphin B expression and was associated with the interaction of secreted dynorphin B with cell surface opioid receptors coupled with protein kinase C (PKC) signaling and complex subcellular redistribution patterning of selected PKC isozymes. Here, confocal microscopy revealed the presence of immunoreactive dynorphin B–like material in GTR1 ES cells, suggesting that dynorphin peptides may also act intracellularly. Opioid binding sites were identified in ES cell nuclei, with a single dissociation constant in the low nanomolar range. A significant increase in B max for a κ opioid receptor ligand was observed in nuclei isolated from ES-derived cardiomyocytes compared with nuclei from undifferentiated cells. Direct exposure of nuclei isolated from undifferentiated ES cells to dynorphin B or U-50,488H, a synthetic κ opioid receptor agonist, time- and dose-dependently activated the transcription of GATA-4 and Nkx-2.5, 2 cardiac lineage–promoting genes. Nuclear exposure to dynorphin B also enhanced the rate of prodynorphin gene transcription. These responses were abolished in a stereospecific fashion by the incubation of isolated nuclei with selective opioid receptor antagonists. Nuclei isolated from undifferentiated cells were able to phosphorylate the acrylodan-labeled MARCKS peptide, a high-affinity fluorescent PKC substrate. Exposure of isolated nuclei to dynorphin B induced a remarkable increase in nuclear PKC activity, which was suppressed by opioid receptor antagonists. Nuclear treatment with PKC inhibitors abolished the capability of dynorphin B to prime the transcription of cardiogenic genes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3