N488I Mutation of the γ2-Subunit Results in Bidirectional Changes in AMP-Activated Protein Kinase Activity

Author:

Zou Liqun1,Shen Mei1,Arad Michael1,He Huamei1,Løfgren Bo1,Ingwall Joanne S.1,Seidman Christine E.1,Seidman Jon G.1,Tian Rong1

Affiliation:

1. From the NMR Laboratory for Physiological Chemistry (L.Z., M.S., H.H., B.L., J.S.I., R.T.), Division of Cardiovascular Medicine (C.E.S.), Brigham and Women’s Hospital, and the Department of Genetics (M.A., C.E.S., J.G.S.), Harvard Medical School, Boston, Mass.

Abstract

Mutations in the human gene encoding the nucleotide-binding region in the γ-subunit of AMP-activated protein kinase (AMPK) cause cardiomyopathy with preexcitation syndrome. Mutant AMPK showed reduced binding affinity to nucleotides in vitro raising the possibility that altered regulation of AMPK activity by AMP/ATP could contribute to the disease phenotype. In this study, we determined the sensitivity of AMPK activity to AMP/ATP in the beating hearts using transgenic mice expressing a mutant (N488I, γ2-mutant) or wild-type γ2-subunit (γ2-TG). The [ATP] and [AMP] were unaltered in all hearts but the AMPK activity was increased by 2.5-fold in γ2-mutant hearts freeze-clamped at normal AMP/ATP compared with nontransgenic (WT) or γ2-TG. The increased basal AMPK activity was caused by increased Thr-172 phosphorylation of the α-subunit (p-AMPK, by 4-fold) at normal [ATP] and was not changed by reducing glycogen content by 60% in the γ2-mutant hearts. A reversal of AMP/ATP, caused by ATP degradation, increased p-AMPK by 7-fold in WT but caused no change in γ2-mutant hearts. These results demonstrate that the mutation renders AMPK insensitive to the inhibitory and stimulatory effects of the regulatory nucleotides ATP and AMP, respectively, suggesting that the pathogenesis of the human disease may not be attributable to a simple loss- or gain-of-function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3