Signal Transduction and Ca 2+ Signaling in Contractile Regulation Induced by Crosstalk Between Endothelin-1 and Norepinephrine in Dog Ventricular Myocardium

Author:

Chu Li1,Takahashi Reiko1,Norota Ikuo1,Miyamoto Takuya1,Takeishi Yasuchika1,Ishii Kuniaki1,Kubota Isao1,Endoh Masao1

Affiliation:

1. From the Department of Pharmacology (L.C., R.T., I.N., K.I., M.E.) and the First Department of Internal Medicine (T.M., Y.T., I.K.), Yamagata University School of Medicine, Yamagata, Japan.

Abstract

In certain cardiovascular disorders, such as congestive heart failure and ischemic heart disease, several endogenous regulators, including norepinephrine (NE) and endothelin-1 (ET-1), are released from various types of cell. Because plasma levels of these regulators are elevated, it seems likely that cardiac contraction might be regulated by crosstalk among these endogenous regulators. We studied the regulation of cardiac contractile function by crosstalk between ET-1 and NE and its relationship to Ca 2+ signaling in canine ventricular myocardium. ET-1 alone did not affect the contractile function. However, in the presence of NE at subthreshold concentrations (0.1 to 1 nmol/L), ET-1 had a positive inotropic effect (PIE). In the presence of NE at higher concentrations (100 to 1000 nmol/L), ET-1 had a negative inotropic effect. ET-1 had a biphasic inotropic effect in the presence of NE at an intermediate concentration (10 nmol/L). The PIE of ET-1 was associated with an increase in myofilament sensitivity to Ca 2+ ions and a small increase in Ca 2+ transients, which required the simultaneous activation of protein kinase A (PKA) and PKC. ET-1 elicited translocation of PKCε from cytosolic to membranous fraction, which was inhibited by the PKC inhibitor GF 109203X. Whereas the Na + -H + exchange inhibitor Hoe 642 suppressed partially the PIE of ET-1, detectable alteration of pH i did not occur during application of ET-1 and NE. The negative inotropic effect of ET-1 was associated with a pronounced decrease in Ca 2+ transients, which was mediated by pertussis toxin-sensitive G proteins, activation of protein kinase G, and phosphatases. When the inhibitory pathway was suppressed, ET-1 had a PIE even in the absence of NE. Our results indicate that the myocardial contractility is regulated either positively or negatively by crosstalk between ET-1 and NE through different signaling pathways whose activation depends on the concentration of NE in the dog.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3