Affiliation:
1. From the Cardiovascular Research Laboratory, Departments of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif.
Abstract
Mitochondria play a key role in determining cell fate during exposure to stress. Their role during ischemia/reperfusion is particularly critical because of the conditions that promote both apoptosis by the mitochondrial pathway and necrosis by irreversible damage to mitochondria in association with mitochondrial permeability transition (MPT). MPT is caused by the opening of permeability transition pores in the inner mitochondrial membrane, leading to matrix swelling, outer membrane rupture, release of apoptotic signaling molecules such as cytochrome
c
from the intermembrane space, and irreversible injury to the mitochondria. During ischemia (the MPT priming phase), factors such as intracellular Ca
2+
accumulation, long-chain fatty acid accumulation, and reactive oxygen species progressively increase mitochondrial susceptibility to MPT, increasing the likelihood that MPT will occur on reperfusion (the MPT trigger phase). Because functional cardiac recovery ultimately depends on mitochondrial recovery, cardioprotection by ischemic and pharmacological preconditioning must ultimately involve the prevention of MPT. Investigations into this area are beginning to unravel some of the mechanistic links between cardioprotective signaling and mitochondria.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
520 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献